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What is a thin group?

@ "An infinite index subgroup of SL(n,Z) with full Zariski closure”
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What is a thin group?

@ "An infinite index subgroup of SL(n,Z) with full Zariski closure”

o Generalize to semigroups in GL(n,Z)
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Examples

o [ =T(2025) is NOT thin.
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|
Examples

o [ =T(2025) is NOT thin.

172 Z
olf=[0 1 Z] is NOT thin.
00 1
001\ /1 2 4
o<100,0—1 —1>ISthin.
010/ \o 1 o0
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Examples

1 1 2 -2 0 -1
oHowaboutF:< 0 1 1]1,{-5 1 -1 >?

0 -3 -2 3 0 1
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0 -3 -2 3 0 1

o Zcl(I) = SL(3);
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Examples

1 1 2 -2 0 -1
oHowaboutF:< 0 1 1]1,{-5 1 -1 >?

0 -3 -2 3 0 1
o Zcl(I) = SL(3);

@ Unknown if T is thin or not.
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Examples
1 1 2 -2 0 -1
oHowaboutF:< 0 1 1]1,{[-5 1 -1 >?
0 -3 -2 3 0 1
e Zcl(I) = SL(3);

@ Unknown if T is thin or not.

In general, it is a difficult question to determine if a group is thin or not.
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|
Thin orbits

o Let I C GL(n,Z) be thin.
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@ Let v € Z" be a primitive vector.
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|
Thin orbits

o Let I C GL(n,Z) be thin.
@ Let v € Z" be a primitive vector.

o Let L :7Z" — Z be a linear functional.

James Rickards (Saint Mary’s University) Local-global 21 April 2025 5/63



|
Thin orbits

o Let I C GL(n,Z) be thin.
@ Let v € Z" be a primitive vector.
o Let L:Z" — Z be a linear functional.

@ What can we say about L(I-v) C Z7?
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Example: Zaremba

Definition

The continued fraction expansion of a real number a € R is [ap; a1, a2, a3, . . ],

where
1
o = ag +

a+——
1 32+...
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Example: Zaremba

Definition

The continued fraction expansion of a real number a € R is [ap; a1, a2, a3, . . ],
where
N 1
a=a+——
1

a+——
1 32+...

Call the sequence a1, ay, . . . the partial quotients of «.
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|
Example: Zaremba

Definition

The continued fraction expansion of a real number a € R is [ap; a1, a2, a3, . . ],

where

1
a=a+———"—

a+——
1 32+...

Call the sequence a1, ay, . . . the partial quotients of «.

If a € Q, it has a finite expansion.

James Rickards (Saint Mary’s University) Local-global 21 April 2025 6/63



N
Zaremba: motivation

@ Zaremba (60s and 70s): generate pseudo-random numbers via

x — bx (mod c¢), fixed coprime b,c € Z
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x — bx (mod c¢), fixed coprime b,c € Z

o If partial quotients of b/c contain large terms, the output is not random
looking.
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x — bx (mod c¢), fixed coprime b,c € Z

o If partial quotients of b/c contain large terms, the output is not random
looking.

o If partial quotients of b/c are all small, the map seems good.
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Zaremba: motivation

Zaremba (60s and 70s): generate pseudo-random numbers via

x — bx (mod c¢), fixed coprime b,c € Z

If partial quotients of b/c contain large terms, the output is not random
looking.

If partial quotients of b/c are all small, the map seems good.

Conjecture: given c, there exists coprime b so that b/c has only small partial
quotients.

James Rickards (Saint Mary's University) Local-global 21 April 2025 7/63



o5 = [0;322,1,4, 6]
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23 =0;3,237,1,13]

(i/c, bifc) for b=3331, c=10007
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|
= [01 27 1, 27 3, 3, 2, 2; 37 17 17 2]

3710
10007

(i/c, bifc) for b=3710, c=10007
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Zaremba's conjecture

Conjecture (Zaremba)

For every positive integer n, there exists a coprime integer m such that all the
partial quotients of 7 are bounded by A, where A is an absolute constant.

James Rickards (Saint Mary's University)
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Zaremba's conjecture

Conjecture (Zaremba)

For every positive integer n, there exists a coprime integer m such that all the
partial quotients of 7 are bounded by A, where A is an absolute constant.

@ n = 54 requires A > 5.

James Rickards (Saint Mary's University)
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Zaremba's conjecture

Conjecture (Zaremba)

For every positive integer n, there exists a coprime integer m such that all the
partial quotients of 7 are bounded by A, where A is an absolute constant.

@ n = 54 requires A > 5.

@ Conjectured that A =5 suffices.
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Zaremba's conjecture

Conjecture (Zaremba)

For every positive integer n, there exists a coprime integer m such that all the
partial quotients of 7 are bounded by A, where A is an absolute constant.

@ n = 54 requires A > 5.
@ Conjectured that A =5 suffices.

@ Replace “all” with “all but finite”, conjectured that A =4, then A =3, and
finally A = 2 suffices (Hensley’s conjecture).
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|
Zaremba's conjecture

Conjecture (Zaremba)

For every positive integer n, there exists a coprime integer m such that all the
partial quotients of 7 are bounded by A, where A is an absolute constant.

@ n = 54 requires A > 5.
@ Conjectured that A =5 suffices.

@ Replace “all” with “all but finite”, conjectured that A =4, then A =3, and
finally A = 2 suffices (Hensley’s conjecture).

@ Best known result: if A=5, a density 1 set of denominators appear
(Bourgain—Kontorovich, Huang).
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|
Zaremba and thin semigroups

o Let A C Z" be a non-empty alphabet.
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o Let A C Z" be a non-empty alphabet.

o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A.
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Zaremba and thin semigroups
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o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A.

o Let Dy :={d: dis a denominator in F4}.
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Zaremba and thin semigroups

o Let A C Z" be a non-empty alphabet.

o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A
o Let Dy :={d: dis a denominator in F4}.

o Let My :={(9}!):a€ A}, and take I to be the semigroup they generate.
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Zaremba and thin semigroups

o Let A C Z" be a non-empty alphabet.

o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A
o Let Dy :={d: dis a denominator in F4}.
o Let My :={(9}!):a€ A}, and take I to be the semigroup they generate.

eneDy & FIyerT for which y(9) = (1) for some integer m:
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Zaremba and thin semigroups

o Let A C Z" be a non-empty alphabet.

o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A
o Let Dy :={d: dis a denominator in F4}.
o Let My :={(9}!):a€ A}, and take I to be the semigroup they generate.

eneDy & FIyerT for which y(9) = (1) for some integer m:

aosa (15)00) 02 0)- ()
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|
Zaremba and thin semigroups

o Let A C Z" be a non-empty alphabet.

o Let F4 be the set of rational numbers in (0,1) with all partial quotients from

A.

Let Dy :={d : d is a denominator in F4}.

Let My :={(91):a€ A}, and take I to be the semigroup they generate.

eneDy & FIyerT for which y(9) = (1) for some integer m:
3 _ 0 1\ /0 1)} /0 1\ /0\ (3
wlra (5) ()02 0)- ()

@ Dg=L(I-v)where L(})=yand v=(9).
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Generalizing Zaremba

o Limiting set F4 has Hausdorff dimension é 4 € [0, 1].
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o Count of denominators of size < N (with multiplicity) is asymptotic to
Ca N20A,
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Generalizing Zaremba

o Limiting set F4 has Hausdorff dimension é 4 € [0, 1].

o Count of denominators of size < N (with multiplicity) is asymptotic to
Ca N20A,

o If 64 > 1/2, the average multiplicity of a denominator goes to oc.
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|
Generalizing Zaremba

o Limiting set F4 has Hausdorff dimension é 4 € [0, 1].

o Count of denominators of size < N (with multiplicity) is asymptotic to
Ca N20A,

o If 64 > 1/2, the average multiplicity of a denominator goes to oc.

Conjecture (Hensley)
If 64 > 1/2, then D4 contains all but finitely many positive integers. J
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|
Hausdorff dimensions

o A={1,2,3,4,5}: 54 ~ 0.8368;
o A=1{1,2,3,4}: 64~ 0.7889;
o A={1,2,3}: 04 =~ 0.7057;

o A={1,2}: 64 ~05313;
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Hausdorff dimensions

o A={1,2,3,4,5}: 6,4 ~ 0.8368;
o A={1,2,3,4}: 4 ~ 0.7889;
o A={1,2,3}: 64~ 0.7057;

o A={1,2}: 54~ 05313

o A=1{2,4,6,8,10}: 4 ~ 0.5174;
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|
Hausdorff dimensions

o A={1,2,3,4,5}: 6,4 ~ 0.8368;
o A={1,2,3,4}: 4 ~ 0.7889;
o A={1,2,3}: 64~ 0.7057;

o A={1,2}: 54~ 05313

o A=1{2,4,6,8,10}: 4 ~ 0.5174;

@ Bourgain-Kontorovich: this last alphabet misses 3 (mod 4), disproving
Hensley's conjecture.
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|
Even partial quotients

X ,_ Y
y x + 2ky

@ x=0 (mod2),y=1 (mod4) = Xpew =1 (Mmod 4), Ynew =0 (mod 2)
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|
Even partial quotients

X ,_ Y
y x + 2ky

@ x=0 (mod2),y=1 (mod4) = Xpew =1 (Mmod 4), Ynew =0 (mod 2)

e x=1(mod4), y=0 (mod 2) = Xpew =0 (Mmod 2), Vnew

1 (mod 4)
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|
Refined conjecture

@ There may exist congruence obstructions, i.e. m (mod n) that cannot occur.
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Refined conjecture

@ There may exist congruence obstructions, i.e. m (mod n) that cannot occur.

@ If a number is not ruled out by a congruence, call it admissible.
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Refined conjecture

@ There may exist congruence obstructions, i.e. m (mod n) that cannot occur.

@ If a number is not ruled out by a congruence, call it admissible.

Conjecture
If 64 > 1/2, then D4 contains all but finitely many admissible positive integers. J
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|
Refined conjecture

@ There may exist congruence obstructions, i.e. m (mod n) that cannot occur.

@ If a number is not ruled out by a congruence, call it admissible.

Conjecture
If 64 > 1/2, then D4 contains all but finitely many admissible positive integers. J

@ Kontorovich: more precise conjecture, incorporating a linear functional
L(x/y) = ax + by and an asymptotic count of the multiplicity.

James Rickards (Saint Mary's University) Local-global 21 April 2025 16 /63



|
Main Theorem

Theorem (R.-Stange)

Consider all rational numbers q which have a continued fraction of the form
q= [0;ala827"'aakab71a2]

where ay € {4,8,12,16,...} = 4Z% and b € Z*. Then no denominator of q is a
perfect square.
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Main Theorem

Theorem (R.-Stange)

Consider all rational numbers q which have a continued fraction of the form
q= [0;ala827"'aakab71a2]

where ay € {4,8,12,16,...} = 4Z% and b € Z*. Then no denominator of q is a
perfect square.

Corresponding Hausdorff dimension is ~ 0.6.
All integers are admissible.
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|
Main Theorem

Theorem (R.-Stange)

Consider all rational numbers q which have a continued fraction of the form
q= [0;ala827"'aakab71a2]

where ay € {4,8,12,16,...} = 4Z% and b € Z*. Then no denominator of q is a
perfect square.

Corresponding Hausdorff dimension is ~ 0.6.
All integers are admissible.

Computed up to 2 x 103, last missing non-square is 7968219670470 ~ 7.9 - 10*2.
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|
Consequences

@ The denominator of
q= [0;‘317827"'731(717172]

is L(x,y) = 3x + 5y, where

X
;:[0;317327"'7‘9/(]
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Consequences

@ The denominator of
q= [0;‘317827"'731(717172]

is L(x,y) = 3x + 5y, where

X
;:[0;317327"'7ak]

o Taking a; € A ={4,8,12,...,128} guarantees 64 > 1/2.
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|
Consequences

@ The denominator of
q= [0;‘317827"'731(717172]

is L(x,y) = 3x + 5y, where

X
;:[0;317327"'7ak]

o Taking a; € A ={4,8,12,...,128} guarantees 64 > 1/2.

@ Disproves the conjecture of Kontorovich

Local-global 21 April 2025 18 /63
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Proof outline

@ Assume that one of x,y =1 (mod 4), and that (?) =—1.
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Proof outline

@ Assume that one of x,y =1 (mod 4), and that (?) =—1.

@ Replace § by

y
x+4ky *
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N
Proof outline

Assume that one of x,y =1 (mod 4), and that (i) =—1.

y
x+4ky *

Replace § by

Congruence clearly preserved.

Quaderatic reciprocity: Kronecker symbol preserved.
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Proof outline

Assume that one of x,y =1 (mod 4), and that (i) =—1.

y
x+4ky *

Replace § by

Congruence clearly preserved.

Quaderatic reciprocity: Kronecker symbol preserved.

Thus, denominator never a square!
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N
Proof outline

Assume that one of x,y =1 (mod 4), and that (i) =—1.

Replace X by X+4ky

Congruence clearly preserved.

Quaderatic reciprocity: Kronecker symbol preserved.

Thus, denominator never a square!

The “tail” of [1,1,2]: start the orbit at 3 to have —1 Kronecker symbol.

James Rickards (Saint Mary's University) Local-global 21 April 2025 19/63
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Zaremba consequences

@ Very strong numerical evidence towards being true.
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Zaremba consequences

@ Very strong numerical evidence towards being true.

o Considering pure denominators: must start orbit at 2, which has (%) = 1.
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|
Zaremba consequences

@ Very strong numerical evidence towards being true.
o Considering pure denominators: must start orbit at 2, which has (%) = 1.

@ Unclear whether an obstruction will exist for a general linear functional.

James Rickards (Saint Mary's University) Local-global 21 April 2025 20/63



|
Origin of the idea

e Wanted to make a subgroup of SL(2,7Z) that preserved Kronecker symbol.
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Origin of the idea

e Wanted to make a subgroup of SL(2,7Z) that preserved Kronecker symbol.

Definition

W::{(?g) €F1(4):a,b,c,d20,(%) :1}.
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Origin of the idea

e Wanted to make a subgroup of SL(2,7Z) that preserved Kronecker symbol.
Definition

W::{(?g) €F1(4):a,b,c,d20,(%) :1}.

Proposition

V is a semigroup.

Local-global 21 April 2025 21/63



|
Origin of the idea

e Wanted to make a subgroup of SL(2,7Z) that preserved Kronecker symbol.
Definition

W::{(ig) €F1(4):a,b,c,d20,(%) :1}.

Proposition

V is a semigroup.

Proposition

Ifx,y € Z*, y is odd, and (25) € W, then
ax+by\ (x
cx+dy) \y)’

Local-global 21 April 2025 21/63




Apollonian circle packings

Theorem (Apollonius)

Let three mutually tangent circles be drawn in the plane. Then there are exactly

two more circles that can be drawn that are mutually tangent to the original three
circles.

Local-global 21 April 2025 22 /63
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Example 1
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Example 1
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Example 2
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Example 2
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|
Apollonian circle packing: repeat!

Figure 1: Generation 0

Local-global 21 April 2025 25 /63



|
Apollonian circle packing: repeat!

Figure 1: Generation 1

Local-global 21 April 2025 25 /63



|
Apollonian circle packing: repeat!

Figure 1: Generation 2
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|
Apollonian circle packing: repeat!

: . : 1
Figure 1: Radius > 5.
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|
Descartes equation

1

re

Definition
The curvature of a circle of radius r is J
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Descartes equation

Definition
1

re

The curvature of a circle of radius r is

Theorem (Descartes, Princess Elisabeth, 1643)

Let four mutually tangent circles have curvatures a, b, c,d. Then

202+ b +c*+d*)=(at+b+c+d)?
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|
Descartes equation

Definition
1

re

The curvature of a circle of radius r is

Theorem (Descartes, Princess Elisabeth, 1643)

Let four mutually tangent circles have curvatures a, b, c,d. Then

202+ b +c*+d*)=(at+b+c+d)?

Definition

We call (a, b, ¢, d) a Descartes quadruple.

— T TR M) 1 Al 2 SR
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Circle swaps

Figure 2: Swapping di with d>
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|
Circle swaps - algebra

e d =d; and d = d, satisfy:

2022+ b+ 4+ d*)=(at+b+c+d)?
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Circle swaps - algebra

e d =d; and d = d, satisfy:

2022+ b+ 4+ d*)=(at+b+c+d)?

@ Rearrange:

d>—2(a+b+c)d+2(a+b*+c*)—(a+b+c)>=0
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Circle swaps - algebra

e d =d; and d = d, satisfy:

2(a° +b*+c*+d?)=(a+ b+ c+d)?

@ Rearrange:

d>—2(a+b+c)d+2(a+b*+c*)—(a+b+c)>=0

o Vieta jumping:

di+dr =2a+2b+2c

Local-global 21 April 2025 28 /63



Example
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Example

Figure 4: 2(11 + 14 + 15) — (—6) = 86
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Example
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Example

Figure 6: 2(—6 + 11 + 15) — 14 = 26
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Example

Figure 7: 2(—6 + 11 + 14) — 15 = 23
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|
Example

Figure 8: Repeat!
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|
Integral theory

e If a,b,c,d € Z, then all curvatures are integers.
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Integral theory

e If a,b,c,d € Z, then all curvatures are integers.

@ Restrict to ged(a, b, ¢, d) = 1 (primitive).
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|
Integral theory

e If a,b,c,d € Z, then all curvatures are integers.
@ Restrict to ged(a, b, ¢, d) = 1 (primitive).

Question J

What curvatures appear in a fixed primitive Apollonian circle packing?

James Rickards (Saint Mary's University) Local-global 21 April 2025 35/63



|
Circle packings as thin groups

@ The Apollonian group is

—1222 1 000 10 00 10
r= 0100 2-122 01 00 01
- 0010 /J°\oo010)J°\22—-12]5100
0001 0001 00 01 22

0
0
1
2

L))

James Rickards (Saint Mary's University) Local-global 21 April 2025 3663



Circle packings as thin groups

@ The Apollonian group is

@ Let v € Z* be a primitive solution to the Descartes equation.
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Circle packings as thin groups

@ The Apollonian group is

@ Let v € Z* be a primitive solution to the Descartes equation.

@ The curvatures of circles appearing in the corresponding circle packing are
the entries of I - v.
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|
Circle packings as thin groups

@ The Apollonian group is

@ Let v € Z* be a primitive solution to the Descartes equation.

@ The curvatures of circles appearing in the corresponding circle packing are
the entries of I - v.

@ This is a union of four thin group orbits.

James Rickards (Saint Mary's University) Local-global 21 April 2025 36 /63
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Curvatures

What curvatures appear in a fixed primitive Apollonian circle packing?

Question J
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What curvatures appear in a fixed primitive Apollonian circle packing?

@ At most one negative curvature can appear.
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Curvatures

What curvatures appear in a fixed primitive Apollonian circle packing?

Question J

@ At most one negative curvature can appear.

o Hausdorff dimension § ~ 1.3057, circles of curvature at most N grows like
cN°.
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Curvatures

Question

What curvatures appear in a fixed primitive Apollonian circle packing? J

@ At most one negative curvature can appear.

o Hausdorff dimension § ~ 1.3057, circles of curvature at most N grows like
cN°.

@ Congruence obstructions modulo 24.

James Rickards (Saint Mary's University) Local-global 21 April 2025 37/63



Figure 9: (—36,72,73,97), circles of curvature < 20000
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Mod 8

Figure 10: (—36,72,73,97), circles of curvature < 20000
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Figure 11: (—36,72,73,97), circles of curvature < 20000

21 April 2025 40 /63



|
Missing curvatures

Definition
Let A be a primitive Apollonian circle packing. Call a positive curvature ¢ missing
in A if curvatures equivalent to ¢ (mod 24) appear in A but ¢ does not.
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|
Missing curvatures

Definition
Let A be a primitive Apollonian circle packing. Call a positive curvature ¢ missing

in A if curvatures equivalent to ¢ (mod 24) appear in A but ¢ does not.
o

Conjecture (Local-global conjecture: Graham-Lagarias-Mallows-Wilks-Yan and
Fuchs-Sanden)

The number of missing curvatures is finite.
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|
Local-global is false!

Theorem (Haag-Kertzer-R.-Stange)

There exist infinitely many primitive Apollonian circle packings for which the
number of missing curvatures up to N is Q(/N). In particular, the local-global
conjecture is false for these packings.

Local-global 21 April 2025 42 /63



|
Local-global is false!

@ More generally, we find families of the form

ox?: ce{1,2,3,6}
dx*: de{1,4,9,36}

which are entirely missing.
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@ More generally, we find families of the form

ox?: ce{1,2,3,6}
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which are entirely missing.

@ Such families are deemed reciprocity obstructions.

o Given a packing, we classify which (if any) reciprocity obstructions are
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|
Local-global is false!

@ More generally, we find families of the form

ox?: ce{1,2,3,6}
dx*: de{1,4,9,36}

which are entirely missing.
@ Such families are deemed reciprocity obstructions.

o Given a packing, we classify which (if any) reciprocity obstructions are
present.

@ Extensive computation suggests this list is complete.

Local-global 21 April 2025 43 /63
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Quadratic and quartic obstructions

Type Quadratic Quartic L-G false L-G open
(6,1,1,1) 0,1,4,9,12,16
(6,1,1,—1) n*, 4n*, 0,1,4,
9n*,36n* | 9,12,16

(6,1,—1) n?,2n?, 0,1,4,

3n?,6n? 9,12,16
(6,5,1) 2n?,3n? 0,8,12 5,20,21
(6,5,—1) n®,6n° 0,12 5,8,20,21
(6,13,1) 2n?,6n° 0 4,12,13,16,21
(6,13,—1) n?,3n? 0,4,12,16 13,21
(6,17,1,1) 3n?%,6n? 9n*,36n* | 0,9,12 8,17,20
(6,17,1,-1) 3n?,6n° n*, 4n* 0,9,12 8,17,20
(6,17, -1) n?,2n? 0,8,9,12 17,20
(8,7,1) 3n?,6n° 3,6 7,10,15,18,19,22
(8 18 3,6,7,10,15,19,22
(8 2,3,6,11,14,15,18,23
(8 2,3,6,18 11,14,15,23

Local-global
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Example

Figure 12: Missing x2, 2x?, 3x2, 6x2
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Example

Figure 13: Missing x*, 4x*, 9x*, 36x*
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Example

Figure 14: Missing 2x>
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|
Example

Figure 15: No reciprocity obstructions. Local-global may still be true!
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|
Fix a packing

Figure 16: (—3,5,8,8)
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N
Fix a circle

Figure 17: Circles tangent to curvature 5 circle
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|
Curvatures of circles tangent to a fixed circle

Possible curvatures:

~3,8,12,20,32, 45,48, 53, 68,77, . ..

— T TR M) 31 Al 2 51/
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Curvatures of circles tangent to a fixed circle

Possible curvatures:

~3,8,12,20,32, 45,48, 53, 68,77, . ..

Consider the quadratic function

f(x,y) = 13x> + 24xy + 13y*> — 5
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|
Curvatures of circles tangent to a fixed circle

Possible curvatures:

~3,8,12,20,32, 45,48, 53, 68,77, . ..

Consider the quadratic function

f(x,y) = 13x> + 24xy + 13y*> — 5

Note that
—-3= f(lv _1)7 8= f(l,O),

12 =f(2,-1), 20=f(3,-2),
32 =f(4,-3), 45=f(1,1),...

— T TR M) 31 Al 2 51/



|
Tangent circles

Observation of Sarnak:

{values of f(x,y) with x, y coprime integers} = {curvatures of tangent circles}
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Tangent circles

Observation of Sarnak:

{values of f(x,y) with x, y coprime integers} = {curvatures of tangent circles}

In general, from (a, b, ¢, d), to the first circle we associate
(a+b)x*+(a+b+c—d)xy +(a+c)y’ —a

The unshifted quadratic form has discriminant —4a2.
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|
Tangent circles

In our case,

f(x,y) = 13x% + 24xy + 13y? — 5 =3x> —6xy + 3y> =3(x — y)*> (mod 5)
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Tangent circles

In our case,

f(x,y) = 13x% + 24xy +13y? —5=3x> — 6xy +3y* =3(x — y)* (mod 5)

If a circle of curvature c is tangent to the curvature 5 circle and ged(c,5) =1,
then

5)-()-
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|
Tangent circles

In our case,

f(x,y) = 13x% + 24xy +13y? —5=3x% — 6xy + 3y =3(x — y)* (mod 5)

If a circle of curvature c is tangent to the curvature 5 circle and ged(c,5) =1,

§-(3)-

In particular, it cannot be square!
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General case

Definition

Let C be a circle of curvature a, and let a tangent circle have curvature b with
ged(a, b) = 1. Define

x2(C) = (’a’) e {11}
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N
General case

Definition

Let C be a circle of curvature a, and let a tangent circle have curvature b with
ged(a, b) = 1. Define

x2(C) = (’a’) e {11}

A similar computation shows that this is well defined in the packing (—3,5,8, 8).

Local-global 21 April 2025 54 /63



|
Quadratic reciprocity

If C; and C, are tangent with coprime curvatures a, b, then

o) =(2) = (3) = (.

as one of them is 1 (mod 4).
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|
Quadratic reciprocity

If C; and C, are tangent with coprime curvatures a, b, then

o) =(2) = (3) = (.

as one of them is 1 (mod 4).

Consider the following graph:

@ vertices = circles;

@ edges between tangent circles of coprime curvature.
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|
Quadratic reciprocity

If C; and C, are tangent with coprime curvatures a, b, then

o) =(2) = (3) = (.

as one of them is 1 (mod 4).

Consider the following graph:

@ vertices = circles;
@ edges between tangent circles of coprime curvature.

This graph is connected! Thus x> is constant across the packing.
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|
Sample path

Figure 18: One coprime path

— T TR M) 31 Ayl 2 EE



|
Consequences

We already observed that x, = —1 for the curvature 5 circle.
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Consequences

We already observed that x, = —1 for the curvature 5 circle.

Thus x2 = —1 for the entire packing!
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Consequences

We already observed that x, = —1 for the curvature 5 circle.
Thus x2 = —1 for the entire packing!

If a curvature was a perfect square, then

contradiction.
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New conjecture

Definition

Call a curvature that is not ruled out by congruence conditions or one of our
reciprocity obstructions sporadic.
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|
New conjecture

Definition
Call a curvature that is not ruled out by congruence conditions or one of our
reciprocity obstructions sporadic.

Conjecture

There are finitely many sporadic curvatures.

In other words, we have found the only exceptions to the local-global conjecture.
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|
Back to thin orbits

o Let I C GL(n,Z) be thin.
@ Let v € Z" be a primitive vector.
o Let L:Z" — Z be a linear functional.

@ What can we say about L(I-v) C Z7?
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-
L(I" - v) standard obstructions

@ Inherited: obstructions may exist for an algebraic set containing I'.
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L(I" - v) standard obstructions

@ Inherited: obstructions may exist for an algebraic set containing I'.

o Definiteness: L(I - v) may only represent numbers above/below a certain
cutoff.

o Let S(N)={n€Z:|n| <N,neL(l'-v)} be counted with multiplicity.
e Counting: often, |S(N)| ~ CN° for some &, the critical exponent.

e Congruence: an integer n is admissible if integers equivalent to n (mod d)
occur in L(I-v) forall d € Z7.
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-
L(I" - v) standard obstructions

@ Inherited: obstructions may exist for an algebraic set containing I'.

o Definiteness: L(I - v) may only represent numbers above/below a certain
cutoff.

o Let S(N)={n€Z:|n| <N,neL(l'-v)} be counted with multiplicity.
e Counting: often, |S(N)| ~ CN° for some &, the critical exponent.

e Congruence: an integer n is admissible if integers equivalent to n (mod d)
occur in L(I-v) forall d € Z7.

@ Congruence obstructions boil down to a single modulus.
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Local-global conjecture

@ These obstructions completely describe L(T - v).
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|
Local-global conjecture

@ These obstructions completely describe L(T - v).

o Typical statement: “For all sufficiently large integers n such that n
(mod N) ¢ X, ne L(T-v)."

@ Our two examples disprove this philosophy by adding in reciprocity
obstructions.
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|
What is a reciprocity obstruction?

@ Congruence obstructions are a symptom of strong approximation, a property
of the group.
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What is a reciprocity obstruction?

@ Congruence obstructions are a symptom of strong approximation, a property
of the group.

@ Individual orbits may or may not have a corresponding congruence
obstruction.

@ Should be an analogous definition for reciprocity obstructions.

@ Required to prove that a group has no reciprocity obstructions.
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|
What is a reciprocity obstruction?

@ Congruence obstructions are a symptom of strong approximation, a property
of the group.

@ Individual orbits may or may not have a corresponding congruence
obstruction.

@ Should be an analogous definition for reciprocity obstructions.

@ Required to prove that a group has no reciprocity obstructions.

@ Need more examples!
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Non-Apollonian circle packing

Figure 19: A non-Apollonian circle packing (Katherine E. Stange)
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