Fast fundamental domains for arithmetic Fuchsian groups in PARI/GP

James Rickards

CU Boulder

james.rickards@colorado.edu

5 August 2022

• Everything described in this presentation has been implemented in PARI/GP, and is publicly available at https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves

- Everything described in this presentation has been implemented in PARI/GP, and is publicly available at https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves
- The code is written in PARI (a C library), and *not* in GP, so you will need to be running PARI/GP on a Linux kernel (e.g. Linux itself, a Linux server, Windows Subsystem for Linux, etc.)

- Everything described in this presentation has been implemented in PARI/GP, and is publicly available at https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves
- The code is written in PARI (a C library), and *not* in GP, so you will need to be running PARI/GP on a Linux kernel (e.g. Linux itself, a Linux server, Windows Subsystem for Linux, etc.)
- The package was compiled on the development version (2.14) of PARI/GP, so if you are running a stable version, you have to call "make" to build the appropriate library file.

• Let Γ be a discrete subgroup of $\mathsf{PSL}(2,\mathbb{R}),$ which acts on the hyperbolic upper half plane $\mathbb{H}.$

- Let Γ be a discrete subgroup of PSL(2, \mathbb{R}), which acts on the hyperbolic upper half plane \mathbb{H} .
- Assume that the quotient space Γ\ℍ has finite hyperbolic area μ(Γ), and denote the hyperbolic distance function on ℍ by d.

- Let Γ be a discrete subgroup of PSL(2, \mathbb{R}), which acts on the hyperbolic upper half plane \mathbb{H} .
- Assume that the quotient space Γ\ℍ has finite hyperbolic area μ(Γ), and denote the hyperbolic distance function on ℍ by d.
- Let $p \in \mathbb{H}$ have trivial stabilizer under the action of Γ . Then the space

$$D(p) := \{z \in \mathbb{H} : d(z, p) \le d(gz, p) \text{ for all } g \in \Gamma\}$$

forms a fundamental domain for $\Gamma \backslash \mathbb{H},$ and is known as a Dirichlet domain.

- Let Γ be a discrete subgroup of PSL(2, \mathbb{R}), which acts on the hyperbolic upper half plane \mathbb{H} .
- Assume that the quotient space Γ\ℍ has finite hyperbolic area μ(Γ), and denote the hyperbolic distance function on ℍ by d.
- Let $p \in \mathbb{H}$ have trivial stabilizer under the action of Γ . Then the space

$$D(p) := \{z \in \mathbb{H} : d(z, p) \le d(gz, p) \text{ for all } g \in \Gamma\}$$

forms a fundamental domain for $\Gamma \backslash \mathbb{H},$ and is known as a Dirichlet domain.

• It is a connected region whose boundary is a closed hyperbolic polygon with finitely many sides, which come paired.

Example 1

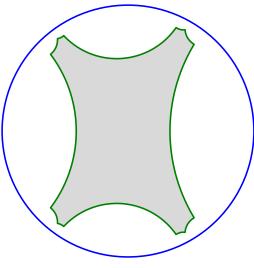
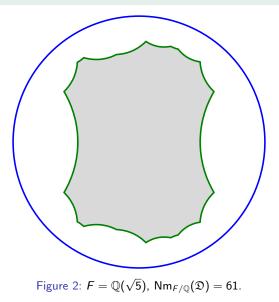
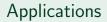


Figure 1: $F = \mathbb{Q}$, $\mathfrak{D} = 21$.

Example 2



James Rickards (CU Boulder)



 \bullet Computing a presentation for Γ with a minimal set of generators;

- Computing a presentation for Γ with a minimal set of generators;
- Solving the word problem with respect to this set of generators;

- Computing a presentation for Γ with a minimal set of generators;
- Solving the word problem with respect to this set of generators;
- Computing the cohomology of the Shimura curve, and the action of Hecke operators;

- Computing a presentation for Γ with a minimal set of generators;
- Solving the word problem with respect to this set of generators;
- Computing the cohomology of the Shimura curve, and the action of Hecke operators;
- Computing Hilbert modular forms;

- Computing a presentation for Γ with a minimal set of generators;
- Solving the word problem with respect to this set of generators;
- Computing the cohomology of the Shimura curve, and the action of Hecke operators;
- Computing Hilbert modular forms;
- Efficiently computing the intersection number of pairs of closed geodesics;

- Computing a presentation for Γ with a minimal set of generators;
- Solving the word problem with respect to this set of generators;
- Computing the cohomology of the Shimura curve, and the action of Hecke operators;
- Computing Hilbert modular forms;
- Efficiently computing the intersection number of pairs of closed geodesics;
- And many more!

• Let *F* be a totally real number field, and *B* a quaternion algebra over *F* of discriminant \mathfrak{D} that is ramified at all but one infinite place.

- Let F be a totally real number field, and B a quaternion algebra over F of discriminant \mathfrak{D} that is ramified at all but one infinite place.
- Take ι to be a corresponding embedding $\iota : B \to Mat(2, \mathbb{R})$.

- Let F be a totally real number field, and B a quaternion algebra over F of discriminant \mathfrak{D} that is ramified at all but one infinite place.
- Take ι to be a corresponding embedding $\iota : B \to Mat(2, \mathbb{R})$.
- Let O be a maximal order in *B*, and let O¹ be the group of elements of reduced norm 1 in O.

- Let *F* be a totally real number field, and *B* a quaternion algebra over *F* of discriminant \mathfrak{D} that is ramified at all but one infinite place.
- Take ι to be a corresponding embedding $\iota : B \to Mat(2, \mathbb{R})$.
- Let O be a maximal order in *B*, and let O¹ be the group of elements of reduced norm 1 in O.
- Then $\Gamma_{O} := \iota(O^{1})/\{\pm 1\} \subseteq \mathsf{PSL}(2,\mathbb{R})$ is a discrete subgroup.

- Let *F* be a totally real number field, and *B* a quaternion algebra over *F* of discriminant \mathfrak{D} that is ramified at all but one infinite place.
- Take ι to be a corresponding embedding $\iota : B \to Mat(2, \mathbb{R})$.
- Let O be a maximal order in B, and let O^1 be the group of elements of reduced norm 1 in O.
- Then $\Gamma_{O} := \iota(O^{1})/\{\pm 1\} \subseteq \mathsf{PSL}(2,\mathbb{R})$ is a discrete subgroup.
- We will be focusing on computing Dirichlet domains for $\Gamma_{\rm O}$.

• John Voight has some lists of totally real number fields on his website (up to degree 10), and the LMFDB has examples up to degree 47.

- John Voight has some lists of totally real number fields on his website (up to degree 10), and the LMFDB has examples up to degree 47.
- The algebras package in PARI allows us to initialize quaternion algebras with a maximal order.

- John Voight has some lists of totally real number fields on his website (up to degree 10), and the LMFDB has examples up to degree 47.
- The algebras package in PARI allows us to initialize quaternion algebras with a maximal order.
- Quaternion algebras can be initialized by specifying (a, b), or by the ramification.

- John Voight has some lists of totally real number fields on his website (up to degree 10), and the LMFDB has examples up to degree 47.
- The algebras package in PARI allows us to initialize quaternion algebras with a maximal order.
- Quaternion algebras can be initialized by specifying (a, b), or by the ramification.
- ? F=nfinit(y^3-5*y+1);
- ? A1=alginit(F, [y-1, -5]);

- John Voight has some lists of totally real number fields on his website (up to degree 10), and the LMFDB has examples up to degree 47.
- The algebras package in PARI allows us to initialize quaternion algebras with a maximal order.
- Quaternion algebras can be initialized by specifying (a, b), or by the ramification.
- ? F=nfinit(y^3-5*y+1);
- ? A1=alginit(F, [y-1, -5]);
- ? I1=idealprimedec(F, 5)[1];
- ? I2=idealprimedec(F, 17)[1]);
- ? A2=alginit(F, [2, [[I1, I2], [1, 1]], [1, 1, 0]]);

• In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.

- In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.
- The outline of the algorithm is:
 - Compute $\mu = \mu(\Gamma_{O})$ via theoretical means;

- In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.
- The outline of the algorithm is:
 - Compute $\mu = \mu(\Gamma_{O})$ via theoretical means;
 - Enumerate some elements of Γ_O, and store them in a (finite) set G (algebraic part);

- In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.
- The outline of the algorithm is:
 - Compute $\mu = \mu(\Gamma_{O})$ via theoretical means;
 - Enumerate some elements of Γ_O, and store them in a (finite) set G (algebraic part);
 - Compute the normalized basis of G, i.e. the fundamental domain for (G) (geometric part);

- In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.
- The outline of the algorithm is:
 - Compute $\mu = \mu(\Gamma_{O})$ via theoretical means;
 - Enumerate some elements of Γ_O, and store them in a (finite) set G (algebraic part);
 - Compute the normalized basis of G, i.e. the fundamental domain for (G) (geometric part);
 - If the area of the domain is $\mu(\Gamma_0)$, stop. Otherwise, go back to step 2.

- In 2009, John Voight published an algorithm to compute the fundamental domain ([Voi09]), which was implemented in Magma.
- The outline of the algorithm is:
 - Compute $\mu = \mu(\Gamma_{O})$ via theoretical means;
 - Enumerate some elements of Γ_O, and store them in a (finite) set G (algebraic part);
 - Compute the normalized basis of G, i.e. the fundamental domain for (G) (geometric part);
 - If the area of the domain is $\mu(\Gamma_{\rm O})$, stop. Otherwise, go back to step 2.
- The running times were okay for small examples, but they did not scale well.

 In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pag15]). His method to generate elements was probabilistic, and performed much better than Voight's method.

- In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pag15]). His method to generate elements was probabilistic, and performed much better than Voight's method.
- Both the geometric and enumeration methods were running in $O(\mu^2)$ time, with the geometry generally having the larger constant.

- In 2015, Aurel Page generalized this algorithm to Kleinian groups ([Pag15]). His method to generate elements was probabilistic, and performed much better than Voight's method.
- Both the geometric and enumeration methods were running in $O(\mu^2)$ time, with the geometry generally having the larger constant.
- The Magma implementation for this is available from his website.

My contributions

• Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.
- Compiled large amounts of data to justify choices of constants.

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.
- Compiled large amounts of data to justify choices of constants.
- Made various code optimizations for even more speed!

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.
- Compiled large amounts of data to justify choices of constants.
- Made various code optimizations for even more speed!
- Code is written in PARI, and is publicly available on GitHub ([Ric22]).

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.
- Compiled large amounts of data to justify choices of constants.
- Made various code optimizations for even more speed!
- Code is written in PARI, and is publicly available on GitHub ([Ric22]).
- Python program to view and explore the computed fundamental domain (and closed geodesics).

- Improved geometric algorithms that run in $O(\mu \log(\mu))$ time.
- Specialized Page's probabilistic enumeration to Fuchsian groups.
- Compiled large amounts of data to justify choices of constants.
- Made various code optimizations for even more speed!
- Code is written in PARI, and is publicly available on GitHub ([Ric22]).
- Python program to view and explore the computed fundamental domain (and closed geodesics).
- See [Ric21] for more details.

Timing comparison

Timing comparison

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	

Timing comparison

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s
5	5763833	1	4490.383		

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s
5	5763833	1	4490.383	31 days 19.9h	

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s
5	5763833	1	4490.383	31 days 19.9h	20m 22.5s

Table 1: Running times of the PARI versus the Magma implementation.

deg(F)	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s
5	5763833	1	4490.383	31 days 19.9h	20m 22.5s
7	20134393	119	1507.964	25 days 21.4h	

Table 1: Running times of the PARI versus the Magma implementation.

$\deg(F)$	disc(F)	$N(\mathfrak{D})$	Area	t(MAGMA)	t(PARI)
1	1	33	20.943	13.190s	0.022s
1	1	793	753.982	4h 22m	1.718s
2	33	37	226.195	4m 57s	0.946s
2	44	79	571.770	69m 43s	3.142s
3	473	99	418.879	28h 56m	4.382s
4	14656	17	469.145	41m 28s	12.107s
5	5763833	1	4490.383	31 days 19.9h	20m 22.5s
7	20134393	119	1507.964	25 days 21.4h	20m 14.9s

• The expected running time is

$$c_1\mu\log(\mu)+c_2\mu^2,$$

where
$$\mu = \mu(\Gamma_{O})$$
, and c_1 and c_2 depend on $n = \deg(F)$.

• The expected running time is

$$c_1\mu\log(\mu)+c_2\mu^2,$$

where $\mu = \mu(\Gamma_{O})$, and c_{1} and c_{2} depend on $n = \deg(F)$.

• The constants cause the geometry to dominate for small areas, especially for *n* small.

Running times I

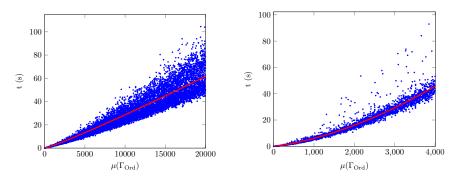


Figure 3: Time to compute the fundamental Figure 4: Time to compute the fundamental domain, n = 1. domain, n = 2.

Running times II

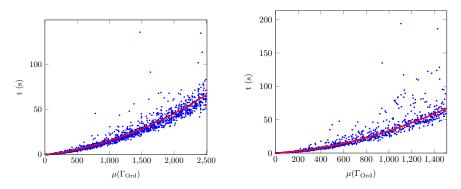


Figure 5: Time to compute the fundamental Figure 6: Time to compute the fundamental domain, n = 3. domain, n = 4.

• U=algfdom(A): computes a Dirichlet domain for A. Can also supply an Eichler order instead of the already computed maximal order.

- U=algfdom(A): computes a Dirichlet domain for A. Can also supply an Eichler order instead of the already computed maximal order.
- P=algfdompresentation(U): computes a presentation for the group.

- U=algfdom(A): computes a Dirichlet domain for A. Can also supply an Eichler order instead of the already computed maximal order.
- P=algfdompresentation(U): computes a presentation for the group.
- W=algfdomword(g, P, U): computes g as a word in terms of the presentation.

- U=algfdom(A): computes a Dirichlet domain for A. Can also supply an Eichler order instead of the already computed maximal order.
- P=algfdompresentation(U): computes a presentation for the group.
- W=algfdomword(g, P, U): computes g as a word in terms of the presentation.
- python_printfdom(U, "fdexample"): prints the fundamental domain data into a file, ready to be viewed with python.

- U=algfdom(A): computes a Dirichlet domain for A. Can also supply an Eichler order instead of the already computed maximal order.
- P=algfdompresentation(U): computes a presentation for the group.
- W=algfdomword(g, P, U): computes g as a word in terms of the presentation.
- python_printfdom(U, "fdexample"): prints the fundamental domain data into a file, ready to be viewed with python.
- fdom_latex(U, "fdom"): writes the fundamental domain to a tex file.

Since I can't embed gp in LaTeX, we will switch windows.

• Allow for non-Eichler orders.

- Allow for non-Eichler orders.
- Compute the presentation in terms of the standard generators:

$$\gamma_1^{m_1} = \dots = \gamma_t^{m_t} = [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] \gamma_1 \cdots \gamma_{t+s} = 1.$$

- Allow for non-Eichler orders.
- Compute the presentation in terms of the standard generators:

$$\gamma_1^{m_1} = \cdots = \gamma_t^{m_t} = [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] \gamma_1 \cdots \gamma_{t+s} = 1.$$

 Add more testing methods, and incorporate the code into the public releases of PARI/GP.

- Allow for non-Eichler orders.
- Compute the presentation in terms of the standard generators:

$$\gamma_1^{m_1} = \cdots = \gamma_t^{m_t} = [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] \gamma_1 \cdots \gamma_{t+s} = 1.$$

- Add more testing methods, and incorporate the code into the public releases of PARI/GP.
- And more!

Acknowledgments and References

This research was supported by an NSERC Vanier Scholarship.

Fundamental domains for Shimura curves.

https://github.com/JamesRickards-Canada/Fundamental-Domains-for-Shimura-curves, 2022.

John Voight.

Computing fundamental domains for Fuchsian groups.

J. Théor. Nombres Bordeaux, 21(2):469-491, 2009.