Totally geodesic surfaces in Bianchi orbifolds

James Rickards

Saint Mary's University

james.rickards@smu.ca

13 December 2024

Fuchsian groups

• $\mathsf{PSL}(2,\mathbb{R})$ acts on \mathbb{H}

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ x = \frac{ax+b}{cx+d}$$

• $\mathsf{PSL}(2,\mathbb{R})$ acts on \mathbb{H}

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ x = \frac{ax+b}{cx+d}$$

• A Fuchsian group is a subgroup that acts discretely

• $\mathsf{PSL}(2,\mathbb{R})$ acts on \mathbb{H}

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ x = \frac{ax+b}{cx+d}$$

- A Fuchsian group is a subgroup that acts discretely
- Standard examples: $PSL(2,\mathbb{Z})$, $\Gamma_0(N)$

• $\mathsf{PSL}(2,\mathbb{R})$ acts on \mathbb{H}

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ x = \frac{ax+b}{cx+d}$$

- A Fuchsian group is a subgroup that acts discretely
- Standard examples: $PSL(2,\mathbb{Z})$, $\Gamma_0(N)$
- Arithmetic Fuchsian groups: arise from quaternion algebras

Quaternion algebras

• F a field, char(F)
$$\neq$$
 2, $a, b \in F^{\times}$

•
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fk$$
, where
 $i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$

Quaternion algebras

• F a field, char(F)
$$\neq$$
 2, $a, b \in F^{\times}$

•
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fk$$
, where
 $i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$

• Every element of B is quadratic over F

Quaternion algebras

• F a field, char(F)
$$\neq$$
 2, $a, b \in F^{\times}$

•
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fk$$
, where
 $i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$

- Every element of B is quadratic over F
- Can be realized as a subalgebra of $Mat(2, F(\sqrt{a}))$:

$$i
ightarrow egin{pmatrix} \sqrt{\sqrt{a}} & 0 \\ 0 & -\sqrt{a} \end{pmatrix}, \quad j
ightarrow egin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix}.$$

• Exactly 2 quaternion algebras over $\mathbb R$ (up to isomorphism): Mat(2, $\mathbb R)$ and $(\frac{-1,-1}{\mathbb R}).$

- Exactly 2 quaternion algebras over $\mathbb R$ (up to isomorphism): Mat(2, $\mathbb R)$ and $(\frac{-1,-1}{\mathbb R}).$
- F is totally real number field, embeddings $\sigma_1, \ldots, \sigma_n : F \to \mathbb{R}$

- Exactly 2 quaternion algebras over $\mathbb R$ (up to isomorphism): Mat(2, $\mathbb R)$ and $(\frac{-1,-1}{\mathbb R}).$
- F is totally real number field, embeddings $\sigma_1, \ldots, \sigma_n : F \to \mathbb{R}$
- $B = \begin{pmatrix} \frac{a,b}{F} \end{pmatrix}$ is unramified at exactly one infinite place: $\begin{pmatrix} \frac{\sigma_i(a),\sigma_i(b)}{\mathbb{R}} \end{pmatrix}$ is Mat $(2, \mathbb{R})$ for exactly one *i*.

- Exactly 2 quaternion algebras over $\mathbb R$ (up to isomorphism): Mat(2, $\mathbb R)$ and $(\frac{-1,-1}{\mathbb R}).$
- F is totally real number field, embeddings $\sigma_1, \ldots, \sigma_n : F \to \mathbb{R}$
- $B = \begin{pmatrix} a, b \\ F \end{pmatrix}$ is unramified at exactly one infinite place: $\begin{pmatrix} \sigma_i(a), \sigma_i(b) \\ \mathbb{R} \end{pmatrix}$ is Mat $(2, \mathbb{R})$ for exactly one *i*.
- Gives an embedding

$$\sigma: B \to \mathsf{Mat}(2, \mathbb{R}),$$

unique up to conjugation.

• O a maximal order in B

- O a maximal order in B
- $\bullet~{\rm O}^1$ the reduced norm 1 elements

- O a maximal order in B
- $\bullet~{\rm O}^1$ the reduced norm 1 elements
- $\Gamma_{\mathrm{O}} := \sigma(\mathrm{O}^1)/\{\pm 1\}$ is a Fuchsian group

- O a maximal order in B
- $\bullet~{\rm O}^1$ the reduced norm 1 elements
- $\Gamma_{\rm O} := \sigma({\rm O}^1)/\{\pm 1\}$ is a Fuchsian group
- Except for $PSL(2,\mathbb{Z})$, these are always co-compact

 $\bullet\,$ Compute a fundamental domain for $\Gamma \backslash \mathbb{H}$

- $\bullet\,$ Compute a fundamental domain for $\Gamma \backslash \mathbb{H}$
- Standard way: compute a Dirichlet domain

- $\bullet\,$ Compute a fundamental domain for $\Gamma \backslash \mathbb{H}$
- Standard way: compute a Dirichlet domain
- Fix $p \in \mathbb{H}$

- $\bullet\,$ Compute a fundamental domain for $\Gamma \backslash \mathbb{H}$
- Standard way: compute a Dirichlet domain
- Fix $p \in \mathbb{H}$
- In every orbit Γz , pick the point closest to p.

- $\bullet\,$ Compute a fundamental domain for $\Gamma \backslash \mathbb{H}$
- Standard way: compute a Dirichlet domain
- Fix $p \in \mathbb{H}$
- In every orbit Γz , pick the point closest to p.
- Connected region whose boundary is a closed hyperbolic polygon with finitely many sides, which come paired.

Example 1

Example 2

• Two sub-problems:

- Two sub-problems:
- Geometry given g_1, \ldots, g_k , compute a fundamental domain for $\langle g_1, \ldots, g_k \rangle$.

- Two sub-problems:
- **Geometry** given g_1, \ldots, g_k , compute a fundamental domain for $\langle g_1, \ldots, g_k \rangle$.
- Algebra generate elements of O¹

- Two sub-problems:
- **Geometry** given g_1, \ldots, g_k , compute a fundamental domain for $\langle g_1, \ldots, g_k \rangle$.
- Algebra generate elements of O^1
- Voight (2009) gave a practical solution to both problems, implemented in Magma

- Two sub-problems:
- **Geometry** given g_1, \ldots, g_k , compute a fundamental domain for $\langle g_1, \ldots, g_k \rangle$.
- Algebra generate elements of O^1
- Voight (2009) gave a practical solution to both problems, implemented in Magma
- Page (2015) higher dimensional variant (Kleinian groups), much improved algebra step, also implemented in Magma

- Two sub-problems:
- **Geometry** given g_1, \ldots, g_k , compute a fundamental domain for $\langle g_1, \ldots, g_k \rangle$.
- Algebra generate elements of O¹
- Voight (2009) gave a practical solution to both problems, implemented in Magma
- Page (2015) higher dimensional variant (Kleinian groups), much improved algebra step, also implemented in Magma
- R. (2022) improved geometric implementation, used Page's algebraic improvements, implemented in PARI/GP

• Each element gives you an isometric circle: points outside the circle are not inside the domain;

- Each element gives you an isometric circle: points outside the circle are not inside the domain;
- Compute normalized boundary, reduce elements, repeat

- Each element gives you an isometric circle: points outside the circle are not inside the domain;
- Compute normalized boundary, reduce elements, repeat
- Normalized boundary: roughly equivalent to computing a convex hull

- Each element gives you an isometric circle: points outside the circle are not inside the domain;
- Compute normalized boundary, reduce elements, repeat
- Normalized boundary: roughly equivalent to computing a convex hull
- Naïve algorithm: $O(n^2)$.
- Graham's scan: $O(n \log(n))$

Algebraic step

• Equivalent to finding integer solutions to an indefinite quadratic form

Algebraic step

- Equivalent to finding integer solutions to an indefinite quadratic form
- Example:

$$B = \left(\frac{-1, 33}{\mathbb{Q}}\right), \quad \mathcal{O} = \left\langle 1, i, \frac{1+j}{2}, \frac{1+i+j+k}{2} \right\rangle_{\mathbb{Z}}$$

• Find $e, f, g, h \in \mathbb{Z}$ satisfying

$$e^2 + f^2 - 8g^2 - 16h^2 + eg + eh + fh - 16gh = 1$$

Algebraic step

- Equivalent to finding integer solutions to an indefinite quadratic form
- Example:

$$B = \left(\frac{-1, 33}{\mathbb{Q}}\right), \quad \mathcal{O} = \left\langle 1, i, \frac{1+j}{2}, \frac{1+i+j+k}{2} \right\rangle_{\mathbb{Z}}$$

• Find $e, f, g, h \in \mathbb{Z}$ satisfying

$$e^{2} + f^{2} - 8g^{2} - 16h^{2} + eg + eh + fh - 16gh = 1$$

Probabilistic method influenced by geometry
Sample timings

deg(F)	Genus	Area	\approx t(MAGMA)	t(PARI) (s)	$\approx \frac{t(MAGMA)}{t(PARI)}$
1	9	100.530	80 s	0.028	2900
1	81	1005.310	> 16 days	0.388	>3500000
1	161	2023.186	> 20 days	0.976	>1700000
1	403	5051.681	> 30 days	3.095	>830000
2	41	542.867	5 h	0.501	36000
2	163	2067.168	> 16 days	5.230	>260000
3	27	350.462	1.3 h	0.861	5700
3	61	770.737	2.4 h	2.486	3500
4	37	469.145	2.2 h	2.852	2700
4	129	1633.628	7.4 days	24.637	26000
5	27	343.481	4.9 h	3.499	5000
5	67	829.380	43 h	12.873	12000
6	14	198.968	1.1 h	2.657	1500
6	42	542.448	6.4 h	14.103	1600
7	6	138.230	7.6 m	3.892	120
7	13	238.761	1.5 h	7.150	760
8	29	422.230	1.1 h	34.929	120
8	27	423.068	1.3 h	43.681	110

• $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x, y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x, y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D
- Action of Γ via $\gamma \circ Q = Q(ax + by, cx + dy)$

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x, y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D
- Action of Γ via $\gamma \circ Q = Q(ax + by, cx + dy)$
- Q(x,1) = 0 has two real roots, γ_Q is geodesic joining them

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x,y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D
- Action of Γ via $\gamma \circ Q = Q(ax + by, cx + dy)$
- Q(x,1) = 0 has two real roots, γ_Q is geodesic joining them
- In $\Gamma \setminus \mathbb{H}$, γ_Q descends to a closed geodesic of length $2 \log(\epsilon_D)$

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x,y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D
- Action of Γ via $\gamma \circ Q = Q(ax + by, cx + dy)$
- Q(x,1) = 0 has two real roots, γ_Q is geodesic joining them
- In $\Gamma \setminus \mathbb{H}$, γ_Q descends to a closed geodesic of length $2 \log(\epsilon_D)$
- All closed geodesics arise this way

- $\Gamma = \mathsf{PSL}(2,\mathbb{Z}), D > 0$ a discriminant
- $Q(x,y) = Ax^2 + Bxy + Cy^2$ a primitive BQF of discriminant D
- Action of Γ via $\gamma \circ Q = Q(ax + by, cx + dy)$
- Q(x,1) = 0 has two real roots, γ_Q is geodesic joining them
- In $\Gamma \setminus \mathbb{H}$, γ_Q descends to a closed geodesic of length $2 \log(\epsilon_D)$
- All closed geodesics arise this way
- Rational arithmetic Fuchsian groups arise from optimal embeddings:

$$\phi: \mathcal{O}_D := \mathbb{Z} + \frac{p_D + \sqrt{D}}{2} \mathbb{Z} \to \mathcal{O}$$

Example

Go up one dimension

• $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 : t > 0\}$ is upper half space.

Go up one dimension

- $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 : t > 0\}$ is upper half space.
- $\mathbb{C} \subseteq \mathbb{H}^3$ via $x + yi \rightarrow (x, y, 0)$.

- $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 : t > 0\}$ is upper half space.
- $\mathbb{C} \subseteq \mathbb{H}^3$ via $x + yi \rightarrow (x, y, 0)$.
- $\mathsf{PSL}(2,\mathbb{C})$ acts on $\mathbb{C}\cup\{\infty\}$, action extends to $\mathsf{Isom}^+\mathbb{H}^3$

- $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 : t > 0\}$ is upper half space.
- $\mathbb{C} \subseteq \mathbb{H}^3$ via $x + yi \to (x, y, 0)$.
- $\mathsf{PSL}(2,\mathbb{C})$ acts on $\mathbb{C}\cup\{\infty\}$, action extends to $\mathsf{Isom}^+\mathbb{H}^3$
- $\bullet~\mbox{Reflections}$ in a line $\rightarrow~\mbox{reflections}$ in orthogonal plane

- $\mathbb{H}^3 = \{(x, y, t) \in \mathbb{R}^3 : t > 0\}$ is upper half space.
- $\mathbb{C} \subseteq \mathbb{H}^3$ via $x + yi \rightarrow (x, y, 0)$.
- $\mathsf{PSL}(2,\mathbb{C})$ acts on $\mathbb{C}\cup\{\infty\}$, action extends to $\mathsf{Isom}^+\mathbb{H}^3$
- $\bullet~\mbox{Reflections}$ in a line $\rightarrow~\mbox{reflections}$ in orthogonal plane
- \bullet Inversions in a circle \rightarrow inversions in orthogonal sphere

• $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ that acts discretely on \mathbb{H}^3 .

- $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ that acts discretely on \mathbb{H}^3 .
- Number field F is ATR if it has exactly 1 $\mathbb C$ place

- $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ that acts discretely on \mathbb{H}^3 .
- Number field F is ATR if it has exactly $1 \ \mathbb{C}$ place
- A quaternion algebra over an ATR is **Kleinian** if it is ramified at all real places.

- $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ that acts discretely on \mathbb{H}^3 .
- Number field F is ATR if it has exactly $1 \ \mathbb{C}$ place
- A quaternion algebra over an ATR is **Kleinian** if it is ramified at all real places.
- Example: any quaternion algebra over $\mathbb{Q}(\sqrt{D})$ with D < 0.

- $\Gamma \leq \mathsf{PSL}(2,\mathbb{C})$ that acts discretely on \mathbb{H}^3 .
- Number field F is ATR if it has exactly $1 \ \mathbb{C}$ place
- A quaternion algebra over an ATR is **Kleinian** if it is ramified at all real places.
- Example: any quaternion algebra over $\mathbb{Q}(\sqrt{D})$ with D < 0.
- Example: $PSL(2, \mathcal{O}_D)$ with D < 0 (Bianchi groups)

• $\sigma: B \to \mathsf{Mat}(2, \mathbb{C})$ the embedding from the complex place

- $\sigma:B
 ightarrow \mathsf{Mat}(2,\mathbb{C})$ the embedding from the complex place
- O a maximal order in B, $\Gamma_{\rm O} = \sigma({\rm O}^1)/\{\pm 1\}$ is a Kleinian group.

- $\sigma: B \to \mathsf{Mat}(2,\mathbb{C})$ the embedding from the complex place
- O a maximal order in B, $\Gamma_{\rm O} = \sigma({\rm O}^1)/\{\pm 1\}$ is a Kleinian group.
- Fundamental domains for Kleinain groups: similar properties to Fuchsian

- $\sigma: B \to \mathsf{Mat}(2,\mathbb{C})$ the embedding from the complex place
- O a maximal order in B, $\Gamma_{\rm O} = \sigma({\rm O}^1)/\{\pm 1\}$ is a Kleinian group.
- Fundamental domains for Kleinain groups: similar properties to Fuchsian
- Page (2015): algorithm to compute fundamental domain, implemented in Magma

- $\sigma: B \to \mathsf{Mat}(2,\mathbb{C})$ the embedding from the complex place
- O a maximal order in B, $\Gamma_{\rm O} = \sigma({\rm O}^1)/\{\pm 1\}$ is a Kleinian group.
- Fundamental domains for Kleinain groups: similar properties to Fuchsian
- Page (2015): algorithm to compute fundamental domain, implemented in Magma
- From now on, we focus on $\Gamma_D := \mathsf{PSL}(2, \mathcal{O}_D)$ for D < 0 a fundamental discriminant

Bianchi Orbifolds

•
$$\Omega_D = \Gamma_D \setminus \mathbb{H}^3$$

Bianchi Orbifolds

- $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$
- Number of cusps: h(D)

Bianchi Orbifolds

- $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$
- Number of cusps: h(D)
- Volume: asymptotic to $D^{3/2}$

Totally geodesic surfaces (TGS)

 \bullet Geodesic surface: hemisphere / plane in \mathbb{H}^3 that is \bot to \mathbb{C}

Totally geodesic surfaces (TGS)

- \bullet Geodesic surface: hemisphere / plane in \mathbb{H}^3 that is \bot to \mathbb{C}
- TGS: the image in $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$.

Totally geodesic surfaces (TGS)

- \bullet Geodesic surface: hemisphere / plane in \mathbb{H}^3 that is \bot to \mathbb{C}
- TGS: the image in $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$.
- Three properties:
 - Immersed: Not dense

- \bullet Geodesic surface: hemisphere / plane in \mathbb{H}^3 that is \bot to \mathbb{C}
- TGS: the image in $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$.
- Three properties:
 - Immersed: Not dense
 - Closed: Does not intersect cusps

- \bullet Geodesic surface: hemisphere / plane in \mathbb{H}^3 that is \bot to \mathbb{C}
- TGS: the image in $\Omega_D = \Gamma_D \setminus \mathbb{H}^3$.
- Three properties:
 - Immersed: Not dense
 - Closed: Does not intersect cusps
 - Embedded: No self-intersection

• Boundary in \mathbb{C} : $|z - z_0| = r$

- Boundary in \mathbb{C} : $|z z_0| = r$
- Rearrange: $a|z|^2 + 2\Re(\overline{B}z) + c = 0$, $a, c \in \mathbb{R}$ and $B \in \mathbb{C}$

- Boundary in \mathbb{C} : $|z z_0| = r$
- Rearrange: $a|z|^2 + 2\Re(\overline{B}z) + c = 0$, $a, c \in \mathbb{R}$ and $B \in \mathbb{C}$
- Get $(a, B, c) \in \mathbb{R} \times \mathbb{C} \times \mathbb{R}$ up to scaling by \mathbb{R}^{\times}

- Boundary in \mathbb{C} : $|z z_0| = r$
- Rearrange: $a|z|^2 + 2\Re(\overline{B}z) + c = 0$, $a, c \in \mathbb{R}$ and $B \in \mathbb{C}$
- Get $(a, B, c) \in \mathbb{R} imes \mathbb{C} imes \mathbb{R}$ up to scaling by $\mathbb{R}^{ imes}$
- Immersed: can scale so $a, c \in \mathbb{Z}$ and $B \in \mathcal{O}_D$
Equations for TGS

- Boundary in \mathbb{C} : $|z z_0| = r$
- Rearrange: $a|z|^2 + 2\Re(\overline{B}z) + c = 0$, $a, c \in \mathbb{R}$ and $B \in \mathbb{C}$
- Get $(a, B, c) \in \mathbb{R} \times \mathbb{C} \times \mathbb{R}$ up to scaling by \mathbb{R}^{\times}
- Immersed: can scale so $a, c \in \mathbb{Z}$ and $B \in \mathcal{O}_D$
- $\Delta = |B|^2 ac \in \mathbb{Z}^+$ the discriminant of the TGS

Equations for TGS

- Boundary in \mathbb{C} : $|z z_0| = r$
- Rearrange: $a|z|^2 + 2\Re(\overline{B}z) + c = 0$, $a, c \in \mathbb{R}$ and $B \in \mathbb{C}$
- Get $(a, B, c) \in \mathbb{R} imes \mathbb{C} imes \mathbb{R}$ up to scaling by $\mathbb{R}^{ imes}$
- Immersed: can scale so $a, c \in \mathbb{Z}$ and $B \in \mathcal{O}_D$
- $\Delta = |B|^2 ac \in \mathbb{Z}^+$ the discriminant of the TGS
- Closed: iff $\left(\frac{D,\Delta}{\mathbb{Q}}\right) \ncong Mat(2,\mathbb{Q})$

• As with quadratic forms, we account for Γ_D -equivalence

- As with quadratic forms, we account for Γ_D -equivalence
- James and Maclachlan (1996): formula for the "class numbers" $n_D(\Delta)$

- As with quadratic forms, we account for Γ_D -equivalence
- James and Maclachlan (1996): formula for the "class numbers" $n_D(\Delta)$
- Vulakh (1993): parametrizes a collection of TGS of a fixed discriminant

- As with quadratic forms, we account for Γ_D -equivalence
- James and Maclachlan (1996): formula for the "class numbers" $n_D(\Delta)$
- Vulakh (1993): parametrizes a collection of TGS of a fixed discriminant
- This list is complete if $Cl(\mathcal{O}_D)$ has no non-trivial 4-torsion.

• To TGS (a, B, c), associate the Hermitian matrix

$$A = \begin{pmatrix} a & B \\ \overline{B} & c \end{pmatrix}$$

• To TGS (a, B, c), associate the Hermitian matrix

$$A = \begin{pmatrix} a & B \\ \overline{B} & c \end{pmatrix}$$

•
$$\Gamma_D = \mathsf{PSL}(2, \mathcal{O}_D)$$
 acts as $\gamma^* A \gamma$

• To TGS (a, B, c), associate the Hermitian matrix

$$A = \begin{pmatrix} a & B \\ \overline{B} & c \end{pmatrix}$$

•
$$\Gamma_D = \mathsf{PSL}(2, \mathcal{O}_D)$$
 acts as $\gamma^* A \gamma$

• Jung-Reid (2015): the CTGS associated to A is embedded iff

$$|\operatorname{Tr}(\gamma^* A \gamma A)| \geq 2$$
 for all $\gamma \in \Gamma_D$

• To TGS (a, B, c), associate the Hermitian matrix

$$A = \begin{pmatrix} a & B \\ \overline{B} & c \end{pmatrix}$$

•
$$\Gamma_D = \mathsf{PSL}(2, \mathcal{O}_D)$$
 acts as $\gamma^* A \gamma$

• Jung-Reid (2015): the CTGS associated to A is embedded iff

$$|\operatorname{Tr}(\gamma^* A \gamma A)| \geq 2$$
 for all $\gamma \in \Gamma_D$

• Applied this result to Vulakh's parametrizations

• Let
$$D' = \begin{cases} D/4 & \text{if } D \text{ is even} \\ D & \text{if } D \text{ is odd} \end{cases}$$

- For each integer *m* satisfying
 - $1 \le m < D'/2$
 - $1 \leq m^2 \pmod{D'} < D'/4$

• $\left(\frac{D,m^2 \pmod{D'}}{\mathbb{Q}}\right) \ncong Mat(2,\mathbb{Q})$ there is a corresponding ECTGS.

• Let
$$D' = \begin{cases} D/4 & \text{if } D \text{ is even} \\ D & \text{if } D \text{ is odd} \end{cases}$$

- For each integer *m* satisfying
 - $1 \le m < D'/2$
 - $1 \leq m^2 \pmod{D'} < D'/4$

• $\left(\frac{D,m^2 \pmod{D'}}{\mathbb{Q}}\right) \ncong Mat(2,\mathbb{Q})$ there is a corresponding ECTGS.

• The number of ECTGS is >> D and $<< D^{1+\epsilon}$

Conjectural list of D with no ECTGS (Jung-Reid)

No 4-torsion in class group:

$$\{ -3, -4, -7, -8, -11, -15, -19, -20, -23, -24, -31, -35, -40, -47, -51, \\ -59, -71, -79, -84, -87, -104, -119, -131, -143, -159, -167, -191, -215, \\ -231, -239, -287, -311, -359, -479, -551, -671, -719 \}^1$$

4-torsion in class group:

 $\{-39, -55, -56, -68, -95, -111, -136, -164\}^1$

¹Corrected published lists

Collaborators

(a) Junehyuk Jung

(b) Sam Kim

• Goal: computationally check if we can find an ECTGS that is a **separating surface**

- Goal: computationally check if we can find an ECTGS that is a **separating surface**
- Method:
 - Use Page's code to compute fundamental domains of $PSL(2, \mathcal{O}_D)$

- Goal: computationally check if we can find an ECTGS that is a **separating surface**
- Method:
 - Use Page's code to compute fundamental domains of $PSL(2, \mathcal{O}_D)$
 - Enumerate corresponding ECTGS with Jung-Reid

- Goal: computationally check if we can find an ECTGS that is a **separating surface**
- Method:
 - Use Page's code to compute fundamental domains of $PSL(2, \mathcal{O}_D)$
 - Enumerate corresponding ECTGS with Jung-Reid
 - Use face pairing to compute all intersections of a ECTGS with the fundamental domain

- Goal: computationally check if we can find an ECTGS that is a **separating surface**
- Method:
 - Use Page's code to compute fundamental domains of $PSL(2, \mathcal{O}_D)$
 - Enumerate corresponding ECTGS with Jung-Reid
 - Use face pairing to compute all intersections of a ECTGS with the fundamental domain
 - Compute signed intersection number with all geodesics to determine if separating
- Last 3 steps all completed in PARI/GP

• Checked all fundamental $-2000 \le D \le -1$ except -1823, -1867

- Checked all fundamental $-2000 \le D \le -1$ except -1823, -1867
- 609 discriminants, 18051 ECTGS

- Checked all fundamental $-2000 \le D \le -1$ except -1823, -1867
- 609 discriminants, 18051 ECTGS
- Not a single one was separating

Number of ECTGS

The number of ECTGS grows like D, but can we say more?

_

D	h(D)	#ECTGS
-1956	20	28
-1959	42	24
-1963	6	151
-1967	36	38
-1972	12	31
-1976	28	19
-1979	23	51
-1983	16	118
-1987	7	141
-1988	24	21
-1991	56	6

Number of ECTGS: Class number maxima

D	h(D)	#ECTGS	Avg $\#$ ECTGS
-3	1	0	0
-15	2	0	0
-23	3	0	0
-39	4	0	0
-47	5	0	0.125
-71	7	0	0.292
-95	8	0	0.419
-119	10	0	0.605
-167	11	0	1.074
-191	13	0	1.283
-215	14	0	1.530
-239	15	0	1.919
-311	19	0	2.694
-431	21	1	4.189

Number of ECTGS: Class number maxima

D	h(D)	#ECTGS	Avg $\# ECTGS$
-479	25	0	4.723
-551	26	0	5.744
-671	30	0	7.597
-719	31	0	8.357
-791	32	2	9.444
-839	33	2	10.239
-959	36	3	11.986
-1151	41	2	14.915
-1319	45	2	17.871
-1511	49	2	21.046
-1559	51	1	21.949
-1679	52	4	23.908
-1991	56	6	29.370

Number of ECTGS: #ECTGS maxima

D	h(D)	#ECTGS	Avg $h(D)$
-3	1	0	1
-43	1	2	1.8
-67	1	4	2.182
-115	2	6	3.139
-163	1	14	3.769
-235	2	18	4.479
-379	3	24	5.786
-403	2	31	6
-427	2	33	6.159
-499	3	35	6.701
-547	3	39	7.054
-643	3	50	7.617
-795	4	57	8.553
-883	3	74	9.018
-907	3	75	9.168

Number of ECTGS: #ECTGS maxima

D	h(D)	#ECTGS	Avg $h(D)$
-955	4	77	9.439
-1027	4	80	9.732
-1227	4	96	10.641
-1387	4	110	11.334
-1411	4	118	11.492
-1435	4	120	11.510
-1507	4	121	11.852
-1555	4	139	12.047
-1867	5	154	13.221

• The signed intersection numbers also let us access homology

- The signed intersection numbers also let us access homology
- Example: D = -43, 2 ECTGS, but they are linearly dependent

- The signed intersection numbers also let us access homology
- Example: D = -43, 2 ECTGS, but they are linearly dependent
- Example: D = -451, 11 ECTGS, linearly independent

- The signed intersection numbers also let us access homology
- Example: D = -43, 2 ECTGS, but they are linearly dependent
- Example: D = -451, 11 ECTGS, linearly independent
- Observation: if D is even, then all ECTGS found are linearly independent

• In theory, we may be missing ECTGS

- In theory, we may be missing ECTGS
- $\bullet\,$ Idea: for a fixed $\Delta,$ pick a Hermitian form of discriminant Δ

- In theory, we may be missing ECTGS
- \bullet Idea: for a fixed $\Delta,$ pick a Hermitian form of discriminant Δ
- Find all Γ_D -translates which intersect the fundamental domain

- In theory, we may be missing ECTGS
- \bullet Idea: for a fixed $\Delta,$ pick a Hermitian form of discriminant Δ
- Find all Γ_D -translates which intersect the fundamental domain
- Repeat with more random forms, stop once we hit the class number

- In theory, we may be missing ECTGS
- \bullet Idea: for a fixed $\Delta,$ pick a Hermitian form of discriminant Δ
- Find all Γ_D -translates which intersect the fundamental domain
- Repeat with more random forms, stop once we hit the class number
- This would find the extraneous classes
4-torsion in the class group

- In theory, we may be missing ECTGS
- \bullet Idea: for a fixed $\Delta,$ pick a Hermitian form of discriminant Δ
- Find all Γ_D -translates which intersect the fundamental domain
- Repeat with more random forms, stop once we hit the class number
- This would find the extraneous classes
- Problem: requires better computational geometry algorithms

• Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.

- Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.
- Naïve algorithm: O(N), can be too slow.

- Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.
- Naïve algorithm: O(N), can be too slow.
- Additionally, there may be a lot of translates you have to enumerate.

- Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.
- Naïve algorithm: O(N), can be too slow.
- Additionally, there may be a lot of translates you have to enumerate.
- Example: D = -184, $\Delta = 276$, there are 2 classes of CTGS.

- Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.
- Naïve algorithm: O(N), can be too slow.
- Additionally, there may be a lot of translates you have to enumerate.
- Example: D = -184, $\Delta = 276$, there are 2 classes of CTGS. One is embedded and has 5 translates, the other is not and has 6159 translates.

33 / 34

- Sample question: given a fundamental domain with N sides and a point p, find which side p projects onto.
- Naïve algorithm: O(N), can be too slow.
- Additionally, there may be a lot of translates you have to enumerate.
- Example: D = -184, $\Delta = 276$, there are 2 classes of CTGS. One is embedded and has 5 translates, the other is not and has 6159 translates.
- Similar geometric improvements are relevant to computing the fundamental domain, e.g. 3D convex hull algorithms

ECTGS

