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Fuchsian groups

PSL(2,R) acts on H

a b R _ax+b
c d X_cx+d

A Fuchsian group is a subgroup that acts discretely

e Standard examples: PSL(2,Z), I'o(N)

Arithmetic Fuchsian groups: arise from quaternion algebras
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|
Quaternion algebras

F a field, char(F) #2, a,b € F*

o B— (LFb> = F + Fi + Fj + Fk, where

Every element of B is quadratic over F

Can be realized as a subalgebra of Mat(2, F(+/a)):

(6 %) ()

CTGS 13 December 2024 3/34



|
Arithmetic Fuchsian groups - |

@ Exactly 2 quaternion algebras over R (up to isomorphism): Mat(2,R) and

(=)
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@ Exactly 2 quaternion algebras over R (up to isomorphism): Mat(2,R) and
—1,-1
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@ F is totally real number field, embeddings o1,...,0,: F = R
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Arithmetic Fuchsian groups - |

@ Exactly 2 quaternion algebras over R (up to isomorphism): Mat(2,R) and
—1,-1
(=)

@ F is totally real number field, embeddings o1,...,0,: F = R

e B= (a—> is unramified at exactly one infinite place: (%) is

b
F
Mat(2, R) for exactly one i.
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Arithmetic Fuchsian groups - |

Exactly 2 quaternion algebras over R (up to isomorphism): Mat(2,R) and
—1,-1
(=)

F is totally real number field, embeddings o1,...,0,: F > R

e B= (a—> is unramified at exactly one infinite place: (%) is

b
F
Mat(2, R) for exactly one i.

@ Gives an embedding
o : B — Mat(2,R),

unique up to conjugation.
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@ O a maximal order in B
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@ O a maximal order in B
o O! the reduced norm 1 elements

e o :=0(0O)/{=£1} is a Fuchsian group
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Arithmetic Fuchsian groups - |l

@ O a maximal order in B

O! the reduced norm 1 elements

Fo :=o(0)/{£1} is a Fuchsian group

Except for PSL(2,Z), these are always co-compact
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Fundamental domains

o Compute a fundamental domain for M\ H
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Fundamental domains

o Compute a fundamental domain for M\ H

@ Standard way: compute a Dirichlet domain

o FixpeH
@ In every orbit 'z, pick the point closest to p.
@ Connected region whose boundary is a closed hyperbolic polygon with finitely

many sides, which come paired.
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Example 1

F=Q ® =21
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Example 2

F = Q(v/5), Nmg /(D) = 61,

James Rickards (SMU) CTGS 13 December 2024 8/34
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|
Practical computation of fundamental domains

@ Two sub-problems:

o Geometry - given gi, ..., gk, compute a fundamental domain for
(81, 8k)-

e Algebra - generate elements of O!

@ Voight (2009) gave a practical solution to both problems, implemented in
Magma

o Page (2015) higher dimensional variant (Kleinian groups), much improved
algebra step, also implemented in Magma

e R. (2022) improved geometric implementation, used Page's algebraic
improvements, implemented in PARI/GP
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|
Geometric step

@ Each element gives you an isometric circle: points outside the circle are not
inside the domain;
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Geometric step

@ Each element gives you an isometric circle: points outside the circle are not
inside the domain;

o Compute normalized boundary, reduce elements, repeat

Normalized boundary: roughly equivalent to computing a convex hull

Naive algorithm: O(n?).

Graham's scan: O(nlog(n))
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Algebraic step

@ Equivalent to finding integer solutions to an indefinite quadratic form
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Algebraic step

@ Equivalent to finding integer solutions to an indefinite quadratic form

5_ —1,33 0= 17i71—|—j71—|—l+J—|—k
Q 2 2 7

e Find e, f, g, h € Z satisfying

o Example:

e’ +f> —8g° — 16h° + eg + eh+ fh — 16gh =1
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Algebraic step

@ Equivalent to finding integer solutions to an indefinite quadratic form
o Example:
_ . ik
5_ 1,33 0= 1,i71—|—j71+l+_j—|—
Q 2 2 7
e Find e, f, g, h € Z satisfying

e’ +f> —8g° — 16h° + eg + eh+ fh — 16gh =1

@ Probabilistic method influenced by geometry
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|
Sample timings

deg(F) | Genus | Area | ~t(MAGMA) | t(PARI) (s) | ~
1 9 100.530 80 s 0.028 2900
1 81 | 1005310 | > 16 days 0.388 >3500000
1 161 | 2023.186 | > 20 days 0.976 >1700000
1 403 | 5051.681 | > 30 days 3.005 >830000
2 41 | 542.867 5 h 0.501 36000
2 163 | 2067.168 | > 16 days 5.230 >260000
3 27 | 350.462 13h 0.861 5700
3 61 | 770.737 24h 2.486 3500
4 37 | 469.145 22h 2.852 2700
4 129 | 1633.628 7.4 days 24.637 26000
5 27 | 343481 49h 3.499 5000
5 67 | 820.380 43h 12.873 12000
6 14 | 198.968 I1h 2.657 1500
6 42 | 542448 6.4 h 14.103 1600
7 6 138.230 76 m 3.802 120
7 13 | 238761 15h 7.150 760
8 29 | 422.230 I1h 34.929 120
8 27 | 423.068 13h 43.681 110

James Rickards (SMU)
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e [ =PSL(2,Z), D > 0 a discriminant
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Geodesics

e [ =PSL(2,Z), D > 0 a discriminant

Q(x,y) = Ax? + Bxy + Cy? a primitive BQF of discriminant D
y y
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Geodesics

e [ =PSL(2,Z), D > 0 a discriminant

Q(x,y) = Ax? + Bxy + Cy? a primitive BQF of discriminant D
y y

@ Action of T via yo Q = Q(ax + by, cx + dy)

@ Q(x,1) =0 has two real roots, g is geodesic joining them

In T\H, ~¢ descends to a closed geodesic of length 2log(ep)

All closed geodesics arise this way

@ Rational arithmetic Fuchsian groups - arise from optimal embeddings:

D
MZ%

> 0]

¢:0p =7+
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Go up one dimension

o H®={(x,y,t) € R®: ¢t > 0} is upper half space.
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Go up one dimension

o H3 = {(x,y,t) € R3:t > 0} is upper half space.
e C CHB via x+yi — (x,y,0).
@ PSL(2,C) acts on C U {00}, action extends to Isom ™ H?3

@ Reflections in a line — reflections in orthogonal plane
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|
Go up one dimension

H3 = {(x,y,t) € R®: t > 0} is upper half space.

C C HB via x + yi — (x,y,0).

@ PSL(2,C) acts on C U {00}, action extends to Isom ™ H?3

Reflections in a line — reflections in orthogonal plane

@ Inversions in a circle — inversions in orthogonal sphere
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I < PSL(2,C) that acts discretely on HZ.

Number field F is ATR if it has exactly 1 C place
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(Arithmetic) Kleinian groups

I < PSL(2,C) that acts discretely on HZ.

Number field F is ATR if it has exactly 1 C place

@ A quaternion algebra over an ATR is Kleinian if it is ramified at all real
places.

o Example: any quaternion algebra over Q(v/D) with D < 0.

Example: PSL(2,Op) with D < 0 (Bianchi groups)
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@ 0 : B — Mat(2,C) the embedding from the complex place
e O a maximal order in B, [ = o(O!)/{£1} is a Kleinian group.

@ Fundamental domains for Kleinain groups: similar properties to Fuchsian

@ Page (2015): algorithm to compute fundamental domain, implemented in
Magma
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Fundamental domains

@ 0 : B — Mat(2,C) the embedding from the complex place
e O a maximal order in B, [ = o(O!)/{£1} is a Kleinian group.

@ Fundamental domains for Kleinain groups: similar properties to Fuchsian

Page (2015): algorithm to compute fundamental domain, implemented in
Magma

From now on, we focus on I'p := PSL(2,0p) for D < 0 a fundamental
discriminant
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Bianchi Orbifolds

4 QD = FD\H3
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Bianchi Orbifolds

(] QD = FD\H3
@ Number of cusps: h(D)

e Volume: asymptotic to D3/2

CTGS
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|
Totally geodesic surfaces (TGS)

e Geodesic surface: hemisphere / plane in H® that is | to C
@ TGS: the image in Qp = p\H5.

@ Three properties:
o Immersed: Not dense

o Closed: Does not intersect cusps

o Embedded: No self-intersection

CTGS 13 December 2024 19/34
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Equations for TGS

@ Boundary in C: |z —z| =r
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Equations for TGS

@ Boundary in C: |z —z| =r
@ Rearrange: a|z|> +2R(Bz) +c=0,a,ccRand B C

o Get (a,B,c) € R x C x R up to scaling by R*
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Equations for TGS

Boundary in C: |z —z| = r

Rearrange: a|z|2 + 2R(Bz)+c=0,a,c€Rand BeC

Get (a,B,c) € R x C x R up to scaling by R*

@ Immersed: can scale so a,c € Z and B € Op
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Equations for TGS

Boundary in C: |z —z| = r

Rearrange: a|z|2 + 2R(Bz)+c=0,a,c€Rand BeC

°
@ Immersed: can scale so a,c € Z and B € Op

Get (a,B,c) € R x C x R up to scaling by R*

A = |BJ? — ac € Z7 the discriminant of the TGS
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Equations for TGS

Boundary in C: |z —z| = r

Rearrange: a|z|2 + 2R(Bz)+c=0,a,c€Rand BeC

Get (a,B,c) € R x C x R up to scaling by R*

@ Immersed: can scale so a,c € Z and B € Op

A = |BJ? — ac € Z7 the discriminant of the TGS

Closed: iff (D’A) % Mat(2,Q)

Q
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@ As with quadratic forms, we account for I'p—equivalence
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|
Counting TGS

@ As with quadratic forms, we account for I'p—equivalence
@ James and Maclachlan (1996): formula for the “class numbers” np(A)
@ Vulakh (1993): parametrizes a collection of TGS of a fixed discriminant

@ This list is complete if CI(Op) has no non-trivial 4-torsion.
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Embedded closed TGS |

@ To TGS (a, B, ¢), associate the Hermitian matrix

- )
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@ To TGS (a, B, ¢), associate the Hermitian matrix
a B
A= (B c)

e 'p =PSL(2,0p) acts as y*Ay
@ Jung-Reid (2015): the CTGS associated to A is embedded iff

|Tr(v*AvA)| > 2 forallyelp
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Embedded closed TGS |

@ To TGS (a, B, ¢), associate the Hermitian matrix
a B
A= (B c)

e 'p =PSL(2,0p) acts as y*Ay

Jung-Reid (2015): the CTGS associated to A is embedded iff

|Tr(v*AvA)| > 2 forallyelp

Applied this result to Vulakh's parametrizations
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Embedded closed TGS Il

o Let D' — D/4 if D is even
|D  ifDis odd

@ For each integer m satisfying
0o 1<m< D)2

o 1< m? (mod D') < D'/4

° (D,m (mod D )) 7% Mat(2 Q)
there is a corresponding ECTGS.
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Embedded closed TGS Il

o Let D' — D/4 if D is even
|D  ifDis odd

@ For each integer m satisfying
0o 1<m< D)2

o 1< m? (mod D') < D'/4

° (D,m (mod D )) 7% Mat(2 Q)
there is a corresponding ECTGS.

@ The number of ECTGS is >> D and << Dt
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Conjectural list of D with no ECTGS (Jung-Reid)

No 4-torsion in class group:

{-3,—-4,-7,-8,—11,—15,—19, —20, —23, —24, —31, —35, —40, —47, —51,
— 59, 71,79, —84, —87, —104, —119, —131, —143, —159, —167, —191, —215,
— 231,239, —287, —311, —359, —479, —551, —671, —719}!

4-torsion in class group:

{—39, 55,56, —68, —95, —111, —136, —164}!

LCorrected published lists
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Collaborators
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Separating surfaces

@ Goal: computationally check if we can find an ECTGS that is a separating
surface
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|
Separating surfaces

@ Goal: computationally check if we can find an ECTGS that is a separating
surface

@ Method:

o Use Page’s code to compute fundamental domains of PSL(2, Op)
e Enumerate corresponding ECTGS with Jung-Reid

o Use face pairing to compute all intersections of a ECTGS with the
fundamental domain

o Compute signed intersection number with all geodesics to determine if
separating

o Last 3 steps all completed in PARI/GP

James Ricka VIU CTGS 13 December 2024 26 /34




Results

@ Checked all fundamental —2000 < D < —1 except —1823, —1867
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Results

@ Checked all fundamental —2000 < D < —1 except —1823, —1867
@ 609 discriminants, 18051 ECTGS

@ Not a single one was separating
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Number of ECTGS

The number of ECTGS grows like D, but can we say more?
D h(D) #ECTGS

-1956 20 28
-1959 42 24
-1963 6 151
-1967 36 38
-1972 12 31
-1976 28 19
-1979 23 51
-1983 16 118
-1987 7 141
-1988 24 21

-1991 56 6
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Number of ECTGS: Class number maxima

D  h(D) #ECTGS Avg# ECTGS

3 1 0 0
15 2 0 0
23 3 0 0
39 4 0 0
47 5 0 0.125
717 0 0.292
95 8 0 0.419
119 10 0 0.605
167 11 0 1.074
191 13 0 1.283
215 14 0 1.530
239 15 0 1.919
311 19 0 2.694
431 21 1 4.189
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Number of ECTGS: Class number maxima

D k(D) #ECTGS Avg# ECTGS

-479 25 0 4.723
-551 26 0 5.744
-671 30 0 7.597
-719 31 0 8.357
-791 32 2 9.444
-839 33 2 10.239
-959 36 3 11.986
-1151 41 2 14.915
-1319 45 2 17.871
-1511 49 2 21.046
-1559 51 1 21.949
-1679 52 4 23.908
-1991 56 6 29.370
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|
Number of ECTGS: #ECTGS maxima

D  h(D) #ECTGS Avg h(D)

31 0 1
43 1 2 1.8
67 1 4 2.182
115 2 6 3.139
163 1 14 3.769
235 2 18 4.479
379 3 24 5.786
-403 2 31 6
427 2 33 6.159
499 3 35 6.701
547 3 39 7.054
643 3 50 7.617
795 4 57 8.553
883 3 74 9.018
907 3 75 9.168
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Number of ECTGS: #ECTGS maxima

D (D) #ECTGS Avg h(D)
055 4 77 9.439
1027 4 80 9.732
1227 4 96 10.641
-1387 4 110 11.334
1411 4 118 11.492
-1435 4 120 11.510
-1507 4 121 11.852
-1555 4 139 12.047
-1867 5 154 13.221
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@ The signed intersection numbers also let us access homology
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Homology

The signed intersection numbers also let us access homology

Example: D = —43, 2 ECTGS, but they are linearly dependent

o Example: D = —451, 11 ECTGS, linearly independent

Observation: if D is even, then all ECTGS found are linearly independent
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@ In theory, we may be missing ECTGS
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4-torsion in the class group

@ In theory, we may be missing ECTGS

Idea: for a fixed A, pick a Hermitian form of discriminant A

@ Find all ['p—translates which intersect the fundamental domain

Repeat with more random forms, stop once we hit the class number

@ This would find the extraneous classes

Problem: requires better computational geometry algorithms
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o Naive algorithm: O(N), can be too slow.
o Additionally, there may be a lot of translates you have to enumerate.

o Example: D = —184, A = 276, there are 2 classes of CTGS. One is
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Computational geometry

@ Sample question: given a fundamental domain with N sides and a point p,
find which side p projects onto.

o Naive algorithm: O(N), can be too slow.
o Additionally, there may be a lot of translates you have to enumerate.

o Example: D = —184, A = 276, there are 2 classes of CTGS. One is
embedded and has 5 translates, the other is not and has 6159 translates.

@ Similar geometric improvements are relevant to computing the fundamental
domain, e.g. 3D convex hull algorithms
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