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Fuchsian groups

PSL(2,R) acts on H (
a b
c d

)
◦ x =

ax + b

cx + d

A Fuchsian group is a subgroup that acts discretely

Standard examples: PSL(2,Z), Γ0(N)

Arithmetic Fuchsian groups: arise from quaternion algebras
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Quaternion algebras

F a field, char(F ) ̸= 2, a, b ∈ F×

B =
(

a,b
F

)
= F + Fi + Fj + Fk , where

i2 = a, j2 = b, k = ij = −ji .

Every element of B is quadratic over F

Can be realized as a subalgebra of Mat(2,F (
√
a)):

i →
(√

a 0
0 −

√
a

)
, j →

(
0 b
1 0

)
.
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Arithmetic Fuchsian groups - I

Exactly 2 quaternion algebras over R (up to isomorphism): Mat(2,R) and(−1,−1
R

)
.

F is totally real number field, embeddings σ1, . . . , σn : F → R

B =
(

a,b
F

)
is unramified at exactly one infinite place:

(
σi (a),σi (b)

R

)
is

Mat(2,R) for exactly one i .

Gives an embedding
σ : B → Mat(2,R),

unique up to conjugation.
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Arithmetic Fuchsian groups - II

O a maximal order in B

O1 the reduced norm 1 elements

ΓO := σ(O1)/{±1} is a Fuchsian group

Except for PSL(2,Z), these are always co-compact
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Fundamental domains

Compute a fundamental domain for Γ\H

Standard way: compute a Dirichlet domain

Fix p ∈ H

In every orbit Γz , pick the point closest to p.

Connected region whose boundary is a closed hyperbolic polygon with finitely
many sides, which come paired.
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Example 1

F = Q, D = 21.
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Example 2

F = Q(
√
5), NmF/Q(D) = 61.
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Practical computation of fundamental domains

Two sub-problems:

Geometry - given g1, . . . , gk , compute a fundamental domain for
⟨g1, . . . , gk⟩.

Algebra - generate elements of O1

Voight (2009) gave a practical solution to both problems, implemented in
Magma

Page (2015) higher dimensional variant (Kleinian groups), much improved
algebra step, also implemented in Magma

R. (2022) improved geometric implementation, used Page’s algebraic
improvements, implemented in PARI/GP
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Geometric step

Each element gives you an isometric circle: points outside the circle are not
inside the domain;

Compute normalized boundary, reduce elements, repeat

Normalized boundary: roughly equivalent to computing a convex hull

Näıve algorithm: O(n2).

Graham’s scan: O(n log(n))
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Algebraic step

Equivalent to finding integer solutions to an indefinite quadratic form

Example:

B =

(
−1, 33

Q

)
, O =

〈
1, i ,

1 + j

2
,
1 + i + j + k

2

〉
Z

Find e, f , g , h ∈ Z satisfying

e2 + f 2 − 8g2 − 16h2 + eg + eh + fh − 16gh = 1

Probabilistic method influenced by geometry
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Sample timings

deg(F ) Genus Area ≈t(MAGMA) t(PARI) (s) ≈ t(MAGMA)
t(PARI)

1 9 100.530 80 s 0.028 2900

1 81 1005.310 > 16 days 0.388 >3500000

1 161 2023.186 > 20 days 0.976 >1700000

1 403 5051.681 > 30 days 3.095 >830000

2 41 542.867 5 h 0.501 36000

2 163 2067.168 > 16 days 5.230 >260000

3 27 350.462 1.3 h 0.861 5700

3 61 770.737 2.4 h 2.486 3500

4 37 469.145 2.2 h 2.852 2700

4 129 1633.628 7.4 days 24.637 26000

5 27 343.481 4.9 h 3.499 5000

5 67 829.380 43 h 12.873 12000

6 14 198.968 1.1 h 2.657 1500

6 42 542.448 6.4 h 14.103 1600

7 6 138.230 7.6 m 3.892 120

7 13 238.761 1.5 h 7.150 760

8 29 422.230 1.1 h 34.929 120

8 27 423.068 1.3 h 43.681 110
James Rickards (SMU) CTGS 13 December 2024 12 / 34



Geodesics

Γ = PSL(2,Z), D > 0 a discriminant

Q(x , y) = Ax2 + Bxy + Cy2 a primitive BQF of discriminant D

Action of Γ via γ ◦ Q = Q(ax + by , cx + dy)

Q(x , 1) = 0 has two real roots, γQ is geodesic joining them

In Γ\H, γQ descends to a closed geodesic of length 2 log(ϵD)

All closed geodesics arise this way

Rational arithmetic Fuchsian groups - arise from optimal embeddings:

ϕ : OD := Z+
pD +

√
D

2
Z → O
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Example
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Go up one dimension

H3 = {(x , y , t) ∈ R3 : t > 0} is upper half space.

C ⊆ H3 via x + yi → (x , y , 0).

PSL(2,C) acts on C ∪ {∞}, action extends to Isom+H3

Reflections in a line → reflections in orthogonal plane

Inversions in a circle → inversions in orthogonal sphere
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(Arithmetic) Kleinian groups

Γ ≤ PSL(2,C) that acts discretely on H3.

Number field F is ATR if it has exactly 1 C place

A quaternion algebra over an ATR is Kleinian if it is ramified at all real
places.

Example: any quaternion algebra over Q(
√
D) with D < 0.

Example: PSL(2,OD) with D < 0 (Bianchi groups)
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Fundamental domains

σ : B → Mat(2,C) the embedding from the complex place

O a maximal order in B, ΓO = σ(O1)/{±1} is a Kleinian group.

Fundamental domains for Kleinain groups: similar properties to Fuchsian

Page (2015): algorithm to compute fundamental domain, implemented in
Magma

From now on, we focus on ΓD := PSL(2,OD) for D < 0 a fundamental
discriminant
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Bianchi Orbifolds

ΩD = ΓD\H3

Number of cusps: h(D)

Volume: asymptotic to D3/2
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Totally geodesic surfaces (TGS)

Geodesic surface: hemisphere / plane in H3 that is ⊥ to C

TGS: the image in ΩD = ΓD\H3.

Three properties:

Immersed: Not dense

Closed: Does not intersect cusps

Embedded: No self-intersection
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Equations for TGS

Boundary in C: |z − z0| = r

Rearrange: a|z |2 + 2ℜ(Bz) + c = 0, a, c ∈ R and B ∈ C

Get (a,B, c) ∈ R× C× R up to scaling by R×

Immersed: can scale so a, c ∈ Z and B ∈ OD

∆ = |B|2 − ac ∈ Z+ the discriminant of the TGS

Closed: iff
(

D,∆
Q

)
̸∼= Mat(2,Q)
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Counting TGS

As with quadratic forms, we account for ΓD−equivalence

James and Maclachlan (1996): formula for the “class numbers” nD(∆)

Vulakh (1993): parametrizes a collection of TGS of a fixed discriminant

This list is complete if Cl(OD) has no non-trivial 4-torsion.
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Embedded closed TGS I

To TGS (a,B, c), associate the Hermitian matrix

A =

(
a B
B c

)

ΓD = PSL(2,OD) acts as γ
∗Aγ

Jung-Reid (2015): the CTGS associated to A is embedded iff

|Tr(γ∗AγA)| ≥ 2 for all γ ∈ ΓD

Applied this result to Vulakh’s parametrizations
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Embedded closed TGS II

Let D ′ =

{
D/4 if D is even

D if D is odd

For each integer m satisfying

1 ≤ m < D ′/2

1 ≤ m2 (mod D ′) < D ′/4(
D,m2 (mod D′)

Q

)
̸∼= Mat(2,Q)

there is a corresponding ECTGS.

The number of ECTGS is >> D and << D1+ϵ
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Conjectural list of D with no ECTGS (Jung-Reid)

No 4-torsion in class group:

{−3,−4,−7,−8,−11,−15,−19,−20,−23,−24,−31,−35,−40,−47,−51,

− 59,−71,−79,−84,−87,−104,−119,−131,−143,−159,−167,−191,−215,

− 231,−239,−287,−311,−359,−479,−551,−671,−719}1

4-torsion in class group:

{−39,−55,−56,−68,−95,−111,−136,−164}1

1Corrected published lists
James Rickards (SMU) CTGS 13 December 2024 24 / 34



Collaborators

(a) Junehyuk Jung (b) Sam Kim
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Separating surfaces

Goal: computationally check if we can find an ECTGS that is a separating
surface

Method:

Use Page’s code to compute fundamental domains of PSL(2,OD)

Enumerate corresponding ECTGS with Jung-Reid

Use face pairing to compute all intersections of a ECTGS with the
fundamental domain

Compute signed intersection number with all geodesics to determine if
separating

Last 3 steps all completed in PARI/GP
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Results

Checked all fundamental −2000 ≤ D ≤ −1 except −1823,−1867

609 discriminants, 18051 ECTGS

Not a single one was separating

James Rickards (SMU) CTGS 13 December 2024 27 / 34



Results

Checked all fundamental −2000 ≤ D ≤ −1 except −1823,−1867

609 discriminants, 18051 ECTGS

Not a single one was separating

James Rickards (SMU) CTGS 13 December 2024 27 / 34



Results

Checked all fundamental −2000 ≤ D ≤ −1 except −1823,−1867

609 discriminants, 18051 ECTGS

Not a single one was separating

James Rickards (SMU) CTGS 13 December 2024 27 / 34



Number of ECTGS

The number of ECTGS grows like D, but can we say more?

D h(D) #ECTGS
-1956 20 28
-1959 42 24
-1963 6 151
-1967 36 38
-1972 12 31
-1976 28 19
-1979 23 51
-1983 16 118
-1987 7 141
-1988 24 21
-1991 56 6

James Rickards (SMU) CTGS 13 December 2024 28 / 34



Number of ECTGS: Class number maxima

D h(D) #ECTGS Avg # ECTGS
-3 1 0 0
-15 2 0 0
-23 3 0 0
-39 4 0 0
-47 5 0 0.125
-71 7 0 0.292
-95 8 0 0.419
-119 10 0 0.605
-167 11 0 1.074
-191 13 0 1.283
-215 14 0 1.530
-239 15 0 1.919
-311 19 0 2.694
-431 21 1 4.189
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Number of ECTGS: Class number maxima

D h(D) #ECTGS Avg # ECTGS
-479 25 0 4.723
-551 26 0 5.744
-671 30 0 7.597
-719 31 0 8.357
-791 32 2 9.444
-839 33 2 10.239
-959 36 3 11.986
-1151 41 2 14.915
-1319 45 2 17.871
-1511 49 2 21.046
-1559 51 1 21.949
-1679 52 4 23.908
-1991 56 6 29.370
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Number of ECTGS: #ECTGS maxima

D h(D) #ECTGS Avg h(D)
-3 1 0 1
-43 1 2 1.8
-67 1 4 2.182
-115 2 6 3.139
-163 1 14 3.769
-235 2 18 4.479
-379 3 24 5.786
-403 2 31 6
-427 2 33 6.159
-499 3 35 6.701
-547 3 39 7.054
-643 3 50 7.617
-795 4 57 8.553
-883 3 74 9.018
-907 3 75 9.168
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Number of ECTGS: #ECTGS maxima

D h(D) #ECTGS Avg h(D)
-955 4 77 9.439
-1027 4 80 9.732
-1227 4 96 10.641
-1387 4 110 11.334
-1411 4 118 11.492
-1435 4 120 11.510
-1507 4 121 11.852
-1555 4 139 12.047
-1867 5 154 13.221
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Homology

The signed intersection numbers also let us access homology

Example: D = −43, 2 ECTGS, but they are linearly dependent

Example: D = −451, 11 ECTGS, linearly independent

Observation: if D is even, then all ECTGS found are linearly independent
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4-torsion in the class group

In theory, we may be missing ECTGS

Idea: for a fixed ∆, pick a Hermitian form of discriminant ∆

Find all ΓD−translates which intersect the fundamental domain

Repeat with more random forms, stop once we hit the class number

This would find the extraneous classes

Problem: requires better computational geometry algorithms
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Computational geometry

Sample question: given a fundamental domain with N sides and a point p,
find which side p projects onto.

Näıve algorithm: O(N), can be too slow.

Additionally, there may be a lot of translates you have to enumerate.

Example: D = −184, ∆ = 276, there are 2 classes of CTGS. One is
embedded and has 5 translates, the other is not and has 6159 translates.

Similar geometric improvements are relevant to computing the fundamental
domain, e.g. 3D convex hull algorithms
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Näıve algorithm: O(N), can be too slow.

Additionally, there may be a lot of translates you have to enumerate.

Example: D = −184, ∆ = 276, there are 2 classes of CTGS. One is
embedded and has 5 translates, the other is not and has 6159 translates.

Similar geometric improvements are relevant to computing the fundamental
domain, e.g. 3D convex hull algorithms

James Rickards (SMU) CTGS 13 December 2024 33 / 34



Computational geometry

Sample question: given a fundamental domain with N sides and a point p,
find which side p projects onto.
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ECTGS
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