
beforehand exactly what Euclid says in his theorem and its demonstration, we
may save him some trouble by informing him that the theorem referred to in the
title of M. Perott’s “remark” is the twentieth proposition of the ninth book. He
will find that Euclid does not say in so many words that the number of primes is
infinite, but that however far the progression of primes is carried there are always
more, which is equivalent to saying that the number is unlimited.

Those were the days! When editors of popular magazines actually read The Ameri-
can Journal of Mathematics! To be sure, the editor evidently was unaware of the vast
development of number theory at the time, a development that made Euclid’s Ele-
ments utterly irrelevant to the work of a contemporary mathematician specializing in
this area. Although the note was anonymous, it was almost certainly written by Wen-
dell Phillips Garrison (1840–1907), who was the literary editor of The Nation at the
time, a man with a strong interest in science. He is the author of a book [1] on Darwin’s
voyage in the Beagle.
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When Is a Polynomial a Composition of
Other Polynomials?

James Rickards

Abstract. In this note we explore when a polynomial f (x) can be expressed as a composi-
tion of other polynomials. First, we give a necessary and sufficient condition on the roots of
f (x). Through a clever use of symmetric functions we then show how to determine if f (x)
is expressible as a composition of polynomials without needing to know any of the roots of
f (x).

1. INTRODUCTION. The problem that sparked this paper is as follows:
Let f (x) be a quadratic polynomial. Prove that there exist quadratic polynomials

g(x) and h(x) for which

f (x) f (x + 1) = g(h(x)) [1, problem 683].
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If f (x) has roots r, s then f (x + 1) has roots r − 1, s − 1; the roots of f (x) f (x + 1)
are r − 1, r, s − 1, s. A key observation that leads to a simple construction of g(x)
and h(x) is that (r − 1) + s = r + (s − 1); the sum of two roots is the same as the
sum of the other two. It turns out that this is a necessary and sufficient condition for
a quartic to be a composition of two quadratics. In this paper we shall prove this by
way of also generalizing this result to polynomials of higher degrees. Furthermore, we
shall provide an algorithm to determine if a polynomial is equal to a composition of
polynomials and, if so, to find a set of compositional factors.

For a multiset X = {x1, x2, . . . , xn} and any k such that 1 ≤ k ≤ n, we denote by
σk(X) the kth symmetric function of the variables xi , the sum of

(n
k

)
products of k of

the xi :

σk(X) =
∑

xα1 xα2 · · · xαk ,

where the sum is taken over all k-tuples (α1, α2, . . . , αk) for which 1 ≤ α1 < · · · <

αk ≤ n. Define σ0(X) = 1. We recall that if f (x) = (x − x1)(x − x2) · · · (x − xn) =

xn
+ an−1xn−1

+ an−2xn−2
+ · · · + a0, then for all j satisfying 1 ≤ j ≤ n, an− j =

(−1) jσ j (X). Also recall that if f (x) = g(h(x)) for polynomials f , g, and h, then
the degree of f is the product of the degrees of g and h.

2. THE CRITERION FOR COMPOSITION.

Proposition 1. Let m and n be integers exceeding one, and let R be the multiset of
roots of a monic polynomial f (x) of degree mn, where each root is listed as often as its
multiplicity. Then f (x) can be written as the composite g(h(x)) for monic polynomials
g(x) and h(x) of degrees m and n respectively if and only if R can be partitioned into
m multisets S1, S2, . . . , Sm , each with n elements, such that, for each integer j with
1 ≤ j ≤ n − 1,

σ j (S1) = σ j (S2) = · · · = σ j (Sm).

Proof. Suppose that the multiset R of roots of f can be partitioned as indicated.
Let R = {r1, r2, . . . , rmn} be the multiset of roots of f , each listed as often as its
multiplicity and indexed so that S1 = {r1, r2, . . . , rn}, S2 = {rn+1, rn+2, . . . , r2n}, . . . ,
Sm = {r(m−1)n+1, r(m−1)n+2, . . . , rmn}. For each i such that 1 ≤ i ≤ m, let

yi (x) = (x − r(i−1)n+1)(x − r(i−1)n+2) · · · (x − rin)

be the monic polynomial whose roots are the elements of Si . Then, if i and j are
positive integers not exceeding m, the condition that the corresponding symmetric
functions of Si and S j are equal except for possibly the nth implies that yi (x)− y j (x)
is a constant. Define zi = y1(x)− yi (x) for each i with 1 ≤ i ≤ m.

Let h(x) = y1(x) and

g(x) = (x − z1)(x − z2) · · · (x − zm).

Then

g(h(x)) = (y1(x)− z1)(y1(x)− z2) · · · (y1(x)− zm) = y1(x)y2(x) · · · ym(x)

=

mn∏
i=1

(x − ri ) = f (x).
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Now we prove that the condition on the roots of f is necessary. Suppose that we
are given monic polynomials g and h of respective degrees m and n for which f (x) =
g(h(x)). Let

g(x) = (x − t1)(x − t2) · · · (x − tm).

For each positive integer i not exceeding m, let

ui (x) = h(x)− ti = (x − r(i−1)n+1)(x − r(i−1)n+2) · · · (x − rin),

say, where each linear factor is listed as often as the multiplicity of the corresponding
root of ui . Then

f (x) = g(h(x)) = (h(x)− t1)(h(x)− t2) · · · (h(x)− tm)

= (x − r1)(x − r2) · · · (x − rmn),

so that the r j are the roots of f .
For each index i with 1 ≤ i ≤ m, ui (x) = h(x)− ti , so that all the coefficients of

ui except the constant are independent of i . It follows that all the symmetric functions
of the roots of the polynomials ui agree except perhaps the nth. Thus, we obtain the
desired partition, where Si consists of the roots of ui . Note that in our partition of the
roots, σ j (Si ) is (−1) j times the coefficient of xn− j in h(x) for 0 ≤ j ≤ n − 1 and
1 ≤ i ≤ m.

Let us deal with polynomials in general.

Proposition 2. Suppose that f (x) is a polynomial of degree mn and leading coeffi-
cient a, so that f (x) = au(x) for some monic polynomial u(x). Then f (x) is a com-
posite of polynomials of degrees m and n if and only if u(x) is a composite of monic
polynomials of degrees m and n.

Proof. Suppose that f (x) = g(h(x)), where g(x) is of degree m with leading coef-
ficient b and h(x) is of degree n with leading coefficient c. Then, by comparison of
leading coefficients, we have that a = bcm . It can be checked that u(x) = v(w(x))
where v(x) = (bcm)−1g(cx) and w(x) = c−1h(x). It is also easily seen that v(x) and
w(x) are both monic.

On the other hand, suppose that u(x) = v(w(x)) for some monic polynomials v(x)
and w(x) of respective degrees m and n. Then f (x) = g(h(x)) with g(x) = av(x)
and h(x) = w(x).

We note that, even for monic polynomials, the decomposition of f (x) as a com-
posite g(h(x)) is not unique. For example, for arbitrary values of a and d, the pairs
(g(x), h(x)) = (x2

+ d, x2
+ ax + 1) and (g(x), h(x)) = (x2

+ 2x + d + 1, x2
+ ax)

both yield

f (x) = x4
+ 2ax3

+ (a2
+ 2)x2

+ 2ax + 1+ d = (x2
+ ax + 1)2 + d.

However, as one might expect from the involvement of a particular partition of the
roots of f (x), the different pairs (g(x), h(x)) are closely linked.

Proposition 3. Let m and n be integers exceeding one. Then there are polynomials
p1, p2, . . . , pn−1 (where for each i , pi is a function of i variables) such that for any
monic polynomials f (x), g(x), and h(x) of degrees mn, m, and n respectively, if
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f (x) = g(h(x)) = xmn
+ amn−1xmn−1

+ · · · + a0, and h(x) = xn
+ cn−1xn−1

+ · · · +

c0, then we have cn− j = p j (amn−1, amn−2, . . . , amn− j ) for all j such that 1 ≤ j ≤
n − 1.

Proof. The coefficient of xn in h(x) is 1, so let cn = 1. As in Proposition 1, let R be
the multiset of roots of f (x), and S1, S2, . . . , Sm be the partition of roots constructed
in Proposition 1. We observed that for our partition of the roots of f (x), σ j (Si ) =

(−1) j cn− j for 1 ≤ i ≤ m and 0 ≤ j ≤ n − 1. Equating expressions for the sum of
roots of f (x), we find that

amn−1 = −σ1(R) = −
m∑

i=1

σ1(Si ) = mcn−1,

so cn−1 = p1(amn−1), where p1(x1) = x1/m. We now construct the polynomials pi

for 2 ≤ i ≤ n − 1 recursively. The expression σk(R) with 2 ≤ k ≤ n − 1 consists of(mn
k

)
terms, each the product of k roots in R. Some of these terms will have all their

factors drawn from exactly one of the Si ; the sum of all such terms is
∑m

i=1 σk(Si ) =

(−1)kmcn−k . The remaining terms will have factors drawn from at least two of the Si ;
the sum of these terms is

S =
∑

σb1(S1)σb2(S2)σb3(S3) · · · σbm (Sm) = (−1)k
∑

cn−b1cn−b2 · · · cn−bm ,

where the summation is taken over all m-tuples (b1, b2, . . . , bm) of nonnegative inte-
gers for which 0 ≤ b1, b2, . . . , bm ≤ k − 1 and b1 + b2 + · · · + bm = k. Thus amn−k =

(−1)kσk(R) = mcn−k + (−1)k S, so therefore

cn−k =
1

m

(
amn−k −

∑
cn−b1cn−b2 · · · cn−bm

)
.

We have already constructed polynomials p1, p2, . . . , pk−1, so we can conclude that
cn−k = pk(amn−1, amn−2, . . . , amn−k), where

pk(x1, x2, . . . , xk) =
1

m

(
xk −

∑
pb1(x1, . . . , xb1) · · · pbm (x1, . . . , xbm )

)
and the summation is taken over all m-tuples (b1, b2, . . . , bm) of nonnegative integers
for which 0 ≤ b1, b2, . . . , bm ≤ k − 1 and b1 + b2 + · · · + bm = k (when bi = 0 say
pbi (x1, x2, . . . , xbi ) = 1).

Proposition 3 is a very strong proposition. If there exists a suitable partition of the
roots of f , then the coefficients of h(x) except for the constant are uniquely determined
and can be computed using only the coefficients of f ; no knowledge of the roots of f
is required. In fact, even if we had access to the roots of f , when the degree of f gets
large we would have many different partitions of the roots to check and it may take a
while to find a suitable partition (if one exists). Using Proposition 3 we exploit the fact
that the coefficients of f (x) are symmetric functions of its roots to easily calculate the
coefficients of h(x) except for the constant. This method is much more effective than
if we used Proposition 1 directly to calculate h(x).

3. CAN f (x) BE EXPRESSED AS A COMPOSITION OF POLYNOMIALS?
Suppose that f (x) is a monic polynomial of degree mn, and we want to try to find
monic polynomials g(x) and h(x) of degrees m and n, respectively, such that f (x) =
g(h(x)). Proposition 3 allows us to identify all but the constant coefficient of h(x);
assign the value 0 to the constant coefficient. Write out the values of h(x)m , h(x)m−1,
. . . , h(x), noting that the respective degrees of these polynomials are mn, mn − n, . . . ,

April 2011] NOTES 361



n. Place the coefficient 1 in front h(x)m . Select em−1 so that the coefficient of xmn−n

in h(x)m + em−1h(x)m−1 agrees with the coefficient of xmn−n in f (x). Next, select
em−2 so that the coefficient of xmn−2n in h(x) + em−1h(x)m−1

+ em−2h(x)m−2 agrees
with the coefficient of xmn−2n in f (x). Repeat the procedure to obtain numbers em−1,
em−2, em−3, . . . , e1, e0 and let g(x) = xm

+ em−1xm−1
+ em−2xm−2

+ · · · + e1x + e0. If
g(h(x)) = f (x), then we have obtained a desired representation.

But what if g(h(x)) is unequal to f (x)? May it still be possible for f (x) to be
represented as a composite? We show that the answer is no.

Suppose that f (x) = g1(h1(x)) for some polynomials g1 and h1 of respective de-
grees m and n. By Proposition 3, the coefficients of h(x) and h1(x) are the same
except for the constant coefficient. Hence h(x) = h1(x)+ p for some constant p. Let
the roots of g1(x) be q1, q2, . . . , qm , so that

f (x) = (h1(x)− q1)(h1(x)− q2) · · · (h1(x)− qm).

Define

g2(x) = (x − p − q1)(x − p − q2) · · · (x − p − qm).

Then

g2(h(x)) = (h(x)− p − q1)(h(x)− p − q2) · · · (h(x)− p − qm)

= (h1(x)− q1)(h1(x)− q2) · · · (h1(x)− qm) = f (x).

We know that if f (x) = g(h(x)) for some polynomial g(x), then indeed it must be the
polynomial produced in the foregoing test. Thus g(x) = g2(x) and f (x) = g(h(x)),
yielding a contradiction. Thus f (x) is not equal to a composite as indicated.

The process can be extended to determining f (x) as a composite of any num-
ber of compositional factors, f (x) = f1( f2( f3(· · · ( fc(x)) · · · ))), where the degree
of f is the product of the assigned respective degrees di of the fi . It will work when-
ever such a representation exists. We know this to be true when c = 2. Suppose that
it is true for c − 1 compositional factors. Then if f (x) = g(h(x)) when h(x) is a
composite of c − 1 compositional factors, the process will produce a representation
f (x) = f1(h(x)+ e) for some constant e. Since h(x) is a composite of c − 1 polyno-
mials, then so is h(x)+ e; just add the constant e to the outside polynomial. We now
can apply the induction hypothesis.

4. EXAMPLES. We consider two examples to show what happens when the repre-
sentation as a composite is and is not possible.

Example 1. Can

f (x) = x8
+ 4x7

+ 10x6
+ 16x5

+ 18x4
+ 14x3

+ 7x2
+ 2x + 3

be written as a composite of three quadratics? First, we try to make f (x) = g(h(x)),
with g(x) a quadratic and h(x) a quartic. We have m = 2 and n = 4, so

p1(x1) =
x1

2
,

p2(x1, x2) =
1

2

(
x2 − (p1(x1))

2
)
=

x2

2
−

x2
1

8
,

p3(x1, x2, x3) =
1

2
(x3 − 2p1(x1)p2(x1, x2)) =

x3

2
−

x1x2

4
+

x3
1

16
.
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Thus the coefficients of x3, x2, and x in h(x) must be p1(4) = 2, p2(4, 10) = 3, and
p3(4, 10, 16) = 2, respectively. Therefore

h(x) = x4
+ 2x3

+ 3x2
+ 2x

and

(h(x))2 = x8
+ 4x7

+ 10x6
+ 16x5

+ 17x4
+ 12x3

+ 4x2
;

this means that e1 = 1 and e0 = 3. Then

(h(x))2 + h(x)+ 3 = x8
+ 4x7

+ 10x6
+ 16x5

+ 18x4
+ 14x3

+ 7x2
+ 2x + 3

= f (x),

so that the polynomials g(x) = x2
+ x + 3 and h(x) = x4

+ 2x3
+ 3x2

+ 2x work.
Now we try to express h(x) as a composite u(v(x)) of two quadratics. In this case,

m = n = 2, so

p1(x1) =
x1

2

and the coefficient of x in v(x) is p1(2) = 1. Thus v(x) = x2
+ x and (v(x))2 =

x4
+ 2x3

+ x2. Since e1 = 2 and e0 = 0, we try u(x) = x2
+ 2x . Indeed

u(v(x)) = (x4
+ 2x3

+ x2)+ 2(x2
+ x)+ 0 = h(x),

with the final result that f (x) = g(u(v(x))).

Example 2. Can x4
− 7x3

+ 14x2
− 8x be expressed as a composite of two quadratics

g and h? In this case, m = n = 2, so

p1(x1) =
x1

2
.

Thus the coefficient of x in h(x) is p1(−7) = −3.5, so h(x) = x2
− 3.5x and

(h(x))2 = x4
− 7x3

+ 12.25x2. This leads to e1 = 1.75 and e0 = 0. But then

(h(x))2 + 1.75h(x)+ 0 = x4
− 7x3

+ 14x2
− 6.125x 6= f (x)

and we conclude that f (x) cannot be expressed as a composite of two quadratics.
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